« Back to publications

PANACEA: An Automated Misinformation Detection System on COVID-19

Runcong Zhao, Miguel Arana-Catania, Lixing Zhu, Elena Kochkina, Lin Gui, Arkaitz Zubiaga, Rob Procter, Maria Liakata, Yulan He

EACL. 2023.

Download PDF fileAccess publication
In this demo, we introduce a web-based misinformation detection system PANACEA on COVID-19 related claims, which has two modules, fact-checking and rumour detection. Our fact-checking module, which is supported by novel natural language inference methods with a self-attention network, outperforms state-of-the-art approaches. It is also able to give automated veracity assessment and ranked supporting evidence with the stance towards the claim to be checked. In addition, PANACEA adapts the bi-directional graph convolutional networks model, which is able to detect rumours based on comment networks of related tweets, instead of relying on the knowledge base. This rumour detection module assists by warning the users in the early stages when a knowledge base may not be available.
    title = "{PANACEA}: An Automated Misinformation Detection System on {COVID}-19",
    author = "Zhao, Runcong  and
      Arana-catania, Miguel  and
      Zhu, Lixing  and
      Kochkina, Elena  and
      Gui, Lin  and
      Zubiaga, Arkaitz  and
      Procter, Rob  and
      Liakata, Maria  and
      He, Yulan",
    booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = may,
    year = "2023",
    address = "Dubrovnik, Croatia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.eacl-demo.9",
    pages = "67--74",