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Abstract

This paper presents the second place system
for the R2VQ: competence-based multimodal
question answering shared task. The task con-
sisted in building question answering systems
that could process procedural recipes involv-
ing both text and image, and enriched with
semantic and cooking roles. We tackled the
task by using a text-to-text generative model
based on the transformer architecture, with the
aim of generalising across different question
types. Our proposed architecture incorporates
a novel approach for enriching input texts by
incorporating semantic and cooking role la-
bels through what we call Label-Enclosed Gen-
erative Question Answering (LEG-QA). Our
model achieves a score of 91.3, with a signifi-
cant improvement over the baseline (65.34) and
close to the top-ranked system ((92.5). After
describing the submitted system, we analyse
the impact of the different components of LEG-
QA as well as perform an error analysis.

1 Introduction

The objective of text-and-image multimodal ques-
tion answering (QA) is to jointly leverage both
textual and visual information to mutually inform
each other for semantic reasoning (Ben-Younes
et al., 2017). A SemEval 2022 shared task titled
Competence-based Multimodal Question Answer-
ing (R2VQ) focuses on this task. In the R2VQ
task, participants were invited to develop QA mod-
els to resolve questions associated with procedural
recipe instructions. The corpus provided for the
task is made of recipes, which include rich seman-
tic annotations and where textual instructions are
aligned with images illustrating them. The authors
proposed to address a set of 18 question families,
for which participants could develop and evaluate
their own proposed solutions.
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This paper describes the participation of the
HIT&QMUL team in the R2VQ task, for which
we proposed a methodology that we call label-
enclosed generative question answering (LEG-
QA). Through this methodology, we proposed en-
closing labels providing semantic information em-
bedded in the input texts. This methodology has
proven competitive by achieving a score of 91.3%
in exact match accuracy, ranking 2nd overall in the
competition.

Our code is available at https:
//github.com/weihezhai/
HIT-QMUL-at-SemEval-2022-Task-9.

2 Task and System Description

Building on the transformer architecture (Vaswani
et al., 2017), we use T5 an encoder-decoder model
(Raffel et al., 2020) implemented using Hugging
Face1. We chose T5 given its reasonably good gen-
eral language learning abilities, and provided that
the downstream task of R2VQ covers a diverse set
of task types that are also shared by T5. Intuitively,
a task-agnostic model like T5 would be expected
to perform well on R2VQ. We further adapt the T5
model to the task by altering the input to include
semantic and cooking role labels enclosed in the
textual recipe instructions.

2.1 Task and Data
The R2VQ (Tu et al.) task proposed the use of
multimodal models to leverage both text and image
for QA in the context of recipes. The R2VQ task
adopts the definition of ‘Question Family’ from
the CLEVR dataset (Johnson et al., 2017), where
each type of question-answer pair comes from a
template identified by task organisers. Each of
these question type is meant to evaluate a different
ability for reasoning.

The R2VQ dataset consists of a collection of
1,000 recipes, of which 800 are used for training

1https://huggingface.co/
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and two sets of 100 recipes are used for valida-
tion and testing. These recipes involve more than
30K question-answer pairs, where each recipe con-
sists of texts with procedural instructions as well
as associated images. Questions are intended to
require both visual and textual information jointly
to produce effective answers. However, based on
our initial explorations of the dataset provided and
after considering the use of multimodal models, we
found that the majority of the questions could be
answered through the sole use of text. Hence, we
thought that the use of an image processing compo-
nent could be avoided while producing an accurate
answer generation model for the dataset at hand.
Further improvement of the model through the use
of an image processing component is therefore left
for future work.

For in-depth analysis of the system results, we
grouped the 11 question types2 provided by the
organisers into 4 categories, i.e. generative, number
reasoning, classification and extractive (see Table 5
in the Appendix for category details). Note that
each of these classes comprises questions intended
to evaluate different abilities of models.

2.2 Soft Constrained Generative QA as
Multitask Transfer Learning

Soft Constrained Text-to-Text Generation
Mainstream text-to-text generation methods mostly
aim to learn meaningful mappings between input
and output sequences. This is particularly the case
for the recent pre-trained language models (Lewis
et al., 2020; Raffel et al., 2020), where the model is
expected to identify what to attend to in the source
input and what to include in the model output. Mod-
els like UniLM, T5 and GPT2 unify the generation
and understanding tasks within a single model, but
none of them investigates the model’s ability of
generating free-form answers which includes both
generative and discriminative tasks.

In R2VQ, all questions are created through a
semi-automated method. Generative questions
such as implicit argument identification (e.g. how
do you drain the pasta?) cannot be answered in-
dependently by an extractive question answering
approach, hence some question types should be
treated as a soft constrained generation (SCGen)
problem (See et al., 2017; Dou et al., 2021). SC-
Gen implicitly specifies token constraints that the

2To be clear, 11 types of questions are defined on the R2VQ
homepage but not the types of question-id in the dataset.

model needs to focus on in the answer output. For
instance, in the question example above, one of
the following words must be present in the answer:
“by”, “using” (gerund of a verb), “in/on/at”, “with”.
There are many variants of models considering soft
constraints, but usually they are achieved by adding
an attention mechanism to the source keywords
(Yao et al., 2019).

Multitask Transfer Learning Multitask learn-
ing consists in training the model on multiple tasks
at a time. This means the model has an objective
of simultaneously taking on more than one task. In
LEG-QA, we leverage and transfer the prior knowl-
edge from T5 and apply to our R2VQ tasks to solve
the unseen SCGen problems. The reason why we
do not train separate models for each of 4 cate-
gories in Table 5 is that we observe non-negligible
accuracy drop when missing some of the question
families.

2.3 Label-Enclosed Input

The key modification we made on the T5 model to
prepare our submitted system is a rarely adopted
heuristic method for embedding label information.
Instead of appending supportive external features
to the text sequence (He et al., 2017, 2018), we
fuse the hidden cooking entities into the original
text through our proposed approach called label-
enclosed input. Typically, to grammatically and
syntactically maintain the textual structure, the text
should not be broken down into pieces by inserting
annotations. However, we noticed that with the
knowledge of labels appearing in the enclosed form,
a pretrained text-to-text multitask model (in our
case T5) can effectively process the enclosed noise
from external information. In turn, the model using
this enriched input behaves better than using a clean
text input, when generatively answering questions
with soft constraints.

2.4 Input Format

Figure 1 depicts the pipeline for the input data pre-
processing through which the attributes of cooking
roles are transformed and enclosed into the input
sequences. We employed different processing ap-
proaches for each type of semantic and cooking
roles. Through close observation, the most fre-
quent attributes that take place in the answers are
the ‘Hidden’ labels which consist of multiple val-
ues and keywords. As shown in the example, after
text regularisation and reorganisation, attributes



Stirring frequently , until the onions have turned golden brown .

Label Enclosed Input

Stirring ( drop : onion mixture # tool : spoon ) frequently , until the onions ( participant : turned ) have turned golden brown . 

Plain Text

( drop : onion mixture # tool : spoon ) ( participant : turned )
Enclosed Label Enclosed Label

Figure 1: Pipeline for creating label-enclosed inputs. In this case, labels are wrapped in braces, and labels for the
same event but are of different categories are separated by hashtag.

(e.g. stirring) are enclosed in special tokens before
embedding them into the input. While the example
shows the use of brackets for enclosing labels, we
tested different approaches, which we discuss in
more detail in Section 3.

3 Experiments

Since different formats of enclosing special tokens
can result in considerably different scores, we com-
pare a range of experiment settings to evaluate their
performance. For more detail on the different en-
closing methods tested, see Table 4 in Appendix
A.

We conduct a series of experiments to answer
the following questions:

Q1: Which way of enclosing special tokens per-
forms best? Is there any big difference between
them, and any measurable explanation for the gap?

Q2: Which label combos achieve the best accu-
racy?

Q3: How significant is the difference between
results generated by size-equivalent models?

3.1 Experimental Settings

For the purpose of, as much as possible, control-
ling variables unrelated to the pre-trained language
model, we experiment with five input variants on
T5-large (our suboptimal result model). For com-
parison, we also show results for models based
on different architectures. In this case, we use
BART(Lewis et al., 2020), a denoising text-to-text
model.

All the performance scores we show indicate the
exact match (EM) accuracy on the development
data.

Enclosing Method GEN CLS NUM EXT Overall

T
5-

L
ar

ge

brackets 87.3 97.0 82.6 93.4 89.9
hash 86.9 97.4 80.6 93.6 89.5
dollar sign 88.2 96.9 81.0 93.8 90.2
[BOL] [EOL] 87.0 97.2 81.0 93.4 89.5
parallel 81.2 97.0 79.7 94.1 86.5

Table 1: Detailed results for different enclosing meth-
ods. The default method is “( )” which is used for our
final submission. The dollar sign enclosing method is
evaluated after the final submission so is not reported as
the best practice during the competition.

3.2 Comparative study

To answer Q1, we report EM score for every 2K
steps up to a total 26K steps. This is equivalent
to approximately 10 epochs. Table 1 summarises
scores achieved by the T5-Large model with the
5 different label-enclosing methods. The Hidden,
Part and Event labels are examined together, given
for that our best-performing model so far follows
this paradigm. The special token “$” dollar sign
has a noticeable positive impact on the GEN task,
leading to the overall best performance. The “Par-
allel” enclosing method refers to directly attaching
all labels horizontally aligned with plain text. Ad-
ditionally, the [BOL] and [EOL] are special sym-
bols inherent to BERT-like models. Unsurprisingly,
joining labels in parallel with text without breaking
sentence syntax helps achieve better EXT score.
The reason for ultimately choosing “( )” is that we
believe that its directional attribute could help the
model parsing the label structure to some extent. A
further combination comparison is discussed when
answering Q2.

To answer Q2, we carry out label combination
experiments to compare the effectiveness of differ-
ent roles when contributing to the 4 question cat-
egories. Table 2 analyses the benefit of gradually



Labels Combo GEN CLS NUM EXT Overall
T

5-
L

ar
ge HIDDEN 86.5 97.2 81.7 94.3 89.5

HIDDEN + PART 87.2 97.2 80.4 94.6 89.8
HIDDEN + PART + EVENT 87.3 97.0 82.6 93.4 89.9
Text Only 46.8 93.8 66.4 93.9 66.7

Table 2: Scores achieved with ensembles of selected
labels, each of which is picked out as a result of benefit-
ing certain types of questions.

appending additional roles to each identified entity,
i.e. adding more extrinsic information which fre-
quently matches with answers. Note that the Hid-
den label is the dominant among participants, as it
appears approximately in all generative questions,
and compared with the text-only method, there is
a noticeable improvement after adding Hidden to
it. First, introducing more applicable labels has
a positive impact on the overall accuracy. We ob-
serve the triplet leads to overall best performance.
Second, plain text behaves consistently to what we
find in answering Q1, which performs worse in
tasks like generative questions, however achieving
strong performance in the extractive questions.

10 20 30 40 50

Step * 1000

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
cc

ur
ac

y
ov

er
st

ep
s

BART-Base
BART-Large
T5-Base

Figure 2: Models accuracy on validation dataset report
every 1k step for three representative models.

To answer Q3, the tested models need to be
comparable. We could say if two models (1) are
roughly of the same amount of parameters (i.e. the
same size). (2) share similar architectural design
methodology (e.g. transformer-based), they would
be considered comparable. We list the performance
comparison of five models for 26k training steps in
Table 3. We see that BART-Large is on a par with
T5-Base from many aspects but performs poorly
on a number of reasoning and generative questions.
This is likely because T5 is fine-tuned on a more

diverse mixture of tasks along with a very large
pre-training dataset. Figure 2 demonstrates that
BART-Large performs poorly at the beginning, tak-
ing off at around the 10k steps i.e. the second epoch.
Moreover, later in the training stage, T5-Base has
a slight advantage in achieving low variance. By
contrast, the performance of BART-Large drops.

Model GEN CLS NUM EXT Overall

E
nc

lo
se

d
by

()

H
D

+
PT

+
E

T BART-Base 82.9 94.2 74.7 92.7 86.0
BART-Large ( 850 MB ) 85.6 96.8 78.5 93.0 88.4
T5-Base ( 950 MB ) 87.0 96.4 81.7 93.9 89.6
T5-Large 87.3 97.0 82.6 93.4 89.9
T5-3B * 88.6 97.4 81.5 93.6 90.5

Table 3: Models comparison between T5 and BART of
multiple sizes, result of T5-3B without error correction
is used as our final prediction model. Note that T5-3B
is 4 times the size of T5-Large. HD, PT and ET are
short for HIDDEN, PART and ENTITY labels. Note
that those labels are defined by the R2VQ dataset.

3.3 Error Analysis

Table 6 gives detailed examples including denoting
mistakes of our suboptimal models i.e. T5-Large,
which is slightly worse than our best T5-3B. As
shown in questions 1 and 3, the model has a ten-
dency to include more unrelated label information
when answering generative questions. However, in
question 4, it ignores some non-label important in-
gredients. That is in part because the transformer’s
attention mechanism sometimes fails at choosing
whether to attend to labels or not when filling the
answer template. Additionally, the worst perform-
nace is for the ‘number reasoning’ question type,
which is very challenging given that it needs to pay
attention to multiple labels in combination. This
could possibly be improved by further re-designing
the transformer block or by including a memory
block over the context.

3.4 Best-performing Submission

Even though we submitted multiple systems
throughout the evaluation phase, our best-
performing submission is the model that uses T5-
3B and integrates the label-enclosing approach
based on round brackets “( )”. This system
achieved an overall 91.3 in the test set, attaining
the 2nd position in the competition.

4 Conclusion

In this paper, we describe the participation of the
HIT&QMUL team in the R2VQ shared task, where



we ranked second. Our model is based on a uni-
fied generative text-to-text approach, in which we
propose a novel label-enclosed input technique to
include annotation labels to include semantic and
cooking role labels. Our model achieved an ex-
act match accuracy of 91.3, well over the base-
line model (65.3) and only slightly behind the top-
ranked system (92.53). Table 7 lists the top five
final results on the R2VQ test set from all user
submissions ordered by Exact Match score.

Through our comparative study, "$" enclosed
labels proved to be best, with the most effective
generative answering ability. A combination of
HIDDEN, PART and ENTITY provides the best
set of labels. Our study of the label-enclosing ap-
proach has some limitations given our focus on a
small number of experimental label combinations.
In future work, more analysis can be conducted
exploring other label combinations potentially lead-
ing to further improved performance. In addition,
the error analysis reveals that the model sometimes
lacks the ability to attend to related labels possibly
due to attention decay. Deeper investigation of this
is left for future work.
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Appendix

A Label-enclosed Example

Enclosing Method Example

( ) Stirring ( drop : onion mixture # tool : spoon ) frequently, until the onions (
participant : turned ) have turned golden brown.

# Stirring # drop : onion mixture # tool : spoon # frequently , until the onions #
participant : turned # have turned golden brown .

$ Stirring $ drop : onion mixture # tool : spoon $ frequently, until the onions $
participant : turned $ have turned golden brown.

[BOL] [EOL] Stirring [BOL] drop : onion mixture # tool : spoon [EOL] frequently, until the
onions [BOL] participant : turned [EOL] have turned golden brown.

Parallel Stirring frequently, until the onions have turned golden brown. [space] drop :
onion mixture tool : spoon [space] [space] [space] [space] [space] participant :
turned [space] [space] [space] [space] [space]

Table 4

B Question Family Categorisation

Catagory Question Family

Number Reasoning (NUM) Cardinality

Classification (CLS) Event Ordering, Unanswerable

Generative (GEN) Implicit Argument Identification, Ellipsis, Object Lifespan

Extractive (EXT) Coreference Location Change, Attribute, Temporal, Result, Cause,
Co-Patient

Table 5



C Error Example

Context
1. Mash eggs & mix with salad cream or mayonnaise. If you prefer a sweeter taste, go with salad cream.
I like mine with mayo.
2. Clean & devein prawns; separate the heads. Blanch prawns & heads.
3. Drain & transfer to ice water to prevent them from over-cooking. Dice prawns & set aside.
4. Remove apple & mango skin & dice fruits into small cubes. Soak apple in salt water, lemon juice or
cider vinegar to prevent it from browning. I usually use the traditional method of soaking in salt water
handed down by my mom. Add them into egg mixture, together with the diced prawns.
5. Remove excess sauce from beancurd skin & stuff mixture into the pockets. You may have to cut &
adjust the pocket height.
6. Cut up watermelon & start plating your dish. Chill your appetiser & youre ready impress your guests
with this Inari Age Laughing Prawns Salad.

Question T5-Large Gold Answer

1. How did you get the mixture? by adding the diced prawns, ap-
ple, mango and prawns to the
bowl

by adding the apple, mango and
prawns to the bowl

2. How do you soak apple to pre-
vent it from browning?

soak apple in salt water, lemon
juice or cider vinegar

soak apple in salt water , lemon
juice or cider vinegar

3. What’s in the inari prawn
salad?

the pocket height and pockets the pockets

4. What should be diced? the apple mango the fruits, apple and mango

5. How many times is the pot
used?

2 3

Table 6

D Leader Board

Username EM F1

t.dryjanski 92.53 94.34

weihezhai 91.34 94.23

ruan 78.21 82.62

kartikaggarwal98 69.49 77.37

r2vq (baseline from organizers) 65.34 75.22

Table 7
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