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Abstract

Scientific claim verification is a unique chal-
lenge that is attracting increasing interest. The
SCIVER shared task offers a benchmark sce-
nario to test and compare claim verification ap-
proaches by participating teams and consists
in three steps: relevant abstract selection, ra-
tionale selection and label prediction. In this
paper, we present team QMUL-SDS’s partic-
ipation in the shared task. We propose an
approach that performs scientific claim veri-
fication by doing binary classifications step-
by-step. We trained a BioBERT-large classi-
fier to select abstracts based on pairwise rel-
evance assessments for each <claim, title of
the abstract> and continued to train it to se-
lect rationales out of each retrieved abstract
based on <claim, sentence>. We then pro-
pose a two-step setting for label prediction, i.e.
first predicting “NOT_ENOUGH_INFO” or
“ENOUGH_INFO”, then label those marked
as “ENOUGH_INFO” as either “SUPPORT”
or “CONTRADICT”. Compared to the base-
line system, we achieve substantial improve-
ments on the dev set. As a result, our team
is the No. 4 team on the leaderboard.

1 Introduction

As online content continues to grow at an unprece-
dented rate, the spread of false information online
increases the potential of misleading people and
causing harm. Where the volume of information
shared online is difficult to be managed by human
fact-checkers, this leads to an increasing demand
on automated fact-checking, which is formulated
by researchers as ‘the assignment of a truth value
to a claim made in a particular context’(Vlachos
and Riedel, 2014).

Though a body of research focuses on conduct-
ing fact-checking in the politics domain, scientific
claim verification has also gained increasing in-
terest in the context of the ongoing COVID-19
pandemic. The SCIVER shared task provides a
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Figure 1: Overview of our step-by-step bi-
nary classification system. NEI stands for
“NOT_ENOUGH_INFO”, C stands for “CON-
TRADICT” and S stands for “SUPPORT”. Given
claim c, our system first retrieves top K TF-IDF
similarity abstracts out of the corpus, then uses a
BioBERT binary classifier to further identify desired
abstracts on top of that. With retrieved abstracts, our
system then uses another BioBERT binary classifier
to select rationales. We finally do label prediction
in a two-step fashion, i.e. first make verdicts on
“ENOUGH_INFO” or not and, if positive, then make
verdicts on “SUPPORT” or not.

valuable benchmark to build and evaluate systems
performing scientific claim verification. Given a
scientific claim and a corpus of over 5000 abstracts,
the task consists in (i) identifying abstracts relevant



to the claim, (ii) delving into the abstracts to select
evidence sentences relevant to the claim, and (iii)
subsequently predicting claim veracity.

This paper presents and analyses team QMUL-
SDS’s participation in the SCIVER shared task. In
particular, we explore creative approaches of solv-
ing the challenge with limited resources. Figure 1
provides an overview of our system. While many
other systems make use of external datasets, e.g.
FEVER (Thorne et al., 2018), our system focuses
on efficient use of the SCIFACT dataset (Wadden
et al., 2020). Furthermore, in the interest of keep-
ing the efficiency of our system, we limit our model
choices to the size of RoBERTa-large (Liu et al.,
2019), ruling out for example GPT-3 (Brown et al.,
2020) and T5 (Raffel et al., 2020), which were used
in other participating systems. More specifically,
our system mainly uses RoBERTa (Liu et al., 2019)
and BioBERT (Lee et al., 2020). The latter is pre-
trained on biomedical text and therefore is very
close to our target domain. With improved pipeline
design, our system shows competitive performance
with limited computing resources, achieving the
6th position in the task and ranked 4th when dis-
tinct teams are considered. 1

2 Related Work

Several approaches have been proposed to perform
scientific claim verification in the three-step set-
tings proposed in SCIVER.

Upon publication of the SCIFACT dataset (Wad-
den et al., 2020), the authors introduced VERISCI
as a baseline system. It is a pipeline with three mod-
ules: abstract retrieval, rationale selection and label
prediction. The abstract retrieval module returns
the top K highest-ranked abstracts determined by
the TF-IDF similarity between each abstract and
the claim at hand. The rationale selection module
trains a RoBERTa-large model to compute rele-
vance scores with a sigmoid function and then se-
lects sentences whose relevance scores are higher
than the threshold T . The label prediction module
trains a RoBERTa-large model to do three-way clas-
sification regarding sentence-pairs, where the can-
didate labels are "SUPPORT", "CONTRADICT"
and "NOT_ENOUGH_INFO". Empirically the sys-
tem set the K value to 3 and the T value to 0.5. Due
to its inspiring design, reasonable performance and
good efficiency, in this paper we take VERISCI
system as our baseline.

1Code is available here.

After the publication of the SCIFACT dataset,
several approaches have been published, some of
which chose to participate in the SCIVER shared
task. We next discuss the top 3 ranked entries. The
VERT5ERINI system (Pradeep et al., 2020) ranked
1st on the leaderboard. This system first retrieves
a shortlist of top 20 abstracts by using the BM25
ranking score (Robertson et al., 1994), which is
then fed into a T5 model to rerank and retrieve the
top 3 abstracts; it then trains a T5 model to calcu-
late relevance scores for each sentence, on which
a threshold of 0.999 is applied to select rationales;
it finally trains a T5 model to do three-way clas-
sification for predicting labels. This system has
demonstrated the performance advantages of using
T5, a model that is substantially bigger than other
language models.

The ParagraphJoint system (Li et al., 2021)
ranked 2nd on the leaderboard. It first uses
BioSentVec (Chen et al., 2019) to retrieve the top
K abstracts and then jointly trains a RoBERTa-
large model to do rationale selection and label pre-
diction in a multi-task learning setting. The sys-
tem is first trained on the FEVER dataset and then
trained on SCIFACT dataset. Its application of
multi-task learning techniques proved to be very
successful and inspires further research in this di-
rection.

The team who ranked 3rd on the leaderboard,
Law & Econ (Stammbach and Ash), fine-tuned
their e-FEVER system on SCIFACT dataset, which
requires usage of GPT-3 and training on FEVER
dataset. Despite the big difference on model sizes,
our system achieves close performance to the e-
FEVER system on the leaderboard.

3 Approach

Following the convention of automated fact-
checking systems (Thorne et al., 2018) and the
VERISCI baseline system, we explore novel ways
of tackling the challenge by handling the three sub-
tasks: abstract retrieval, rationale selection and
label prediction.

3.1 Abstract Retrieval

Abstract retrieval is the task of retrieving relevant
abstracts that can support the prediction of a claim’s
veracity. Inspired by the baseline system, which
retrieves the top K (K = 3) abstracts with the
highest TF-IDF similarity to the claim, initially we
attempted a similar method with a state-of-the-art

https://github.com/XiaZeng0223/sciverbinary.git


similarity metric, i.e., BERTscore (Zhang et al.,
2020). It computes token similarity using BERT-
based contextual embeddings. However, the results
we achieved were not satisfactory2 and was ruled
out in subsequent experiments.

Instead of completely relying on available met-
rics, we investigated performing abstract retrieval
in a supervised manner. In contrast to previ-
ous work (Pradeep et al., 2020) which performed
reranking, we formulate it as a binary classification
problem. We first empirically limit the corpus to
the top 30 abstracts with highest TF-IDF similarity
to the claim. We fine-tuned a BioBERT model (Lee
et al., 2020) with a linear classification head, which
we name as the BioBERT classifier thereafter, to
do binary classification on the top 30 TF-IDF ab-
stracts, i.e. predicting whether the abstract at hand
is correctly identified for the claim at hand given
the pairwise input <claim c, title t of the abstract>.
Due to the input length limits of BERT models,
we only use the title of the abstract at this stage,
assuming that the title represents a good summary
of the abstract.

3.2 Rationale Selection

Rationale Selection is the task of selecting rationale
sentences out of the retrieved abstracts. To avoid
manually tuning the threshold on various settings
like the baseline system, we address the problem as
a binary classification task in a very similar manner
to the last step. We continued training the BioBERT
classifier inherited from the abstract retrieval step
to do rationale selection, i.e. making binary predic-
tions on whether the sentence at hand is correctly
identified for the claim at hand given sentence pair
<claim c, sentence s>. As our classifier model only
outputs binary predictions with its linear head on
individual sentence pair cases, there is no need
to apply various ranking thresholds. Aiming to
achieve better overall pipeline performance, our
models are trained on abstracts retrieved in the first
step, rather than oracle abstracts.

3.3 Label Prediction

Label prediction is the task of predicting the ve-
racity label given the target claim and rationale
sentences selected in the preceding step of the
pipeline. A good selection of relevant abstracts
and rationales therefore is vital in the capacity of
the veracity label prediction system.

2See detailed results in appendix A

The baseline system we initially implemented
trained a RoBERTa-large model to do three-way
classification into one of “NOT_ENOUGH_INFO”,
“SUPPORT” and “CONTRADICT”. We observed
that, while the model was in general fairly accurate,
it performed poorly in predicting the "CONTRA-
DICT" class due to the scarcity of training data
pertaining to this class. However, it is known that
claims belonging to the “CONTRADICT” class
are particularly difficult to collect, and that auto-
mated fact-checking datasets tend to create them
synthetically by manually mutating naturally oc-
curring claims originally pertaining to the “SUP-
PORT” class (Thorne et al., 2018; Wadden et al.,
2020; Sathe et al., 2020). With the aim of im-
proving model performance on this class without
using extra data, we try to decrease wrong pre-
dictions accumulated by wrong predictions on the
other labels. For instance, the model may pre-
dict a claim to be “NOT_ENOUGH_INFO” while
it should be “CONTRADICT”, which makes it
a false positive for the “NOT_ENOUGH_INFO”
class and a true negative for the “CONTRADICT”
class. If the model has better performance on the
“NOT_ENOUGH_INFO” predictions, it would in
turn help the performance on the “CONTRADICT”
class.

Hence, we explore label prediction within a
two-step setting. First, we merge claims from
the “SUPPORT” and “CONTRADICT” classes as
“ENOUGH_INFO”. With this altered dataset, we
train a RoBERTa-large model as a neutral detector
to do binary classification into “ENOUGH_INFO”
or “NOT_ENOUGH_INFO”. Second, we merge
data from “NOT_ENOUGH_INFO” and “CON-
TRADICT” to be “NOT_SUPPORT” and train
another RoBERTa-large model as a support de-
tector to do binary classification on “SUPPORT”
or “NOT_SUPPORT”. Finally, when doing predic-
tions, we first use the neutral detector to predict
“ENOUGH_INFO” or “NOT_ENOUGH_INFO”
and only if the first prediction is “ENOUGH_INFO”
we use the support detector to predict “SUPPORT”
or “NOT_SUPPORT”. We take “NOT_SUPPORT”
instances as equivalent to “CONTRADICT” in-
stances in the three-way classification.

4 Results

We perform various experiments on the SCIFACT
dataset to identify the best models and techniques
to be submitted to the task. Unless explicitly speci-



fied, models are trained on the SCIFACT’s train set
and evaluated on the SCIFACT’s dev set.

4.1 Abstract Retrieval
We limit the candidate abstracts to the top 30 with
the highest TF-IDF similarity scores, as this setting
achieves a high recall of 91.39%. With our bi-
nary classification method, we experimented with
BioBERT models that are pre-trained on close do-
main texts (Lee et al., 2020). To explore the poten-
tials of adapting pre-trained language models to the
current settings, we also conducted task adaptive
pre-training (Gururangan et al., 2020) on the SCI-
FACT corpus with BioBERT-base for 50 epochs
with batch size 1, which leads to a final perplexity
of 2.68. This parameter choice is made primarily
based on our limited time and computational re-
sources for the SCIVER shared task participation.
Further extensive exploration may lead to interest-
ing results. This model is denoted as BioBERT-
base*.

Table 1 reports performance of the baseline,
BioBERT-base, BioBERT-base* and BioBERT-
large models on abstract retrieval. The baseline
directly retrieves the top 3 abstracts with highest
TF-IDF similarity, which is also the method used
in the VERISCI system (Wadden et al., 2020). We
also report abstract level pipeline performance with
baseline rationale selector and baseline label predic-
tor to demonstrate its substantial impact on pipeline
performance.

Our method achieves noticeable improvements
over the baseline by largely decreasing the false
positive rate. More specifically, BioBERT-base
has the highest precision score, BioBERT-base*
has highest F1 score and BioBERT-large has the
highest recall score. With increased model size,
BioBERT-large has gained significant improve-
ments on recall but suffers with a precision drop
compared to BioBERT-base and BioBERT-base*,
which may suggest model underfitting. Overall our
approach leads to an approximate 10% increase
over the baseline approach on abstract level down-
stream performance.

4.2 Rationale Selection
In order to improve the overall design of the sys-
tem, we trained our rationale selection models with
abstracts retrieved by our abstract retrieval mod-
ule rather than oracle abstracts. We use abstracts
retrieved by BioBERT-large due to its highest re-
call score. In this step, we experiment with our

Abstract Retrieval

Method P R F1

Baseline 16.22 69.86 26.33
BioBERT-base 83.23 64.11 72.43
BioBERT-base* 81.61 67.94 74.15
BioBERT-large 62.75 74.16 67.98

Downstream Performance

Abstract Level Label Only

Method P R F1

Baseline 56.42 48.33 52.06
BioBERT-base 84.30 48.80 61.82
BioBERT-base* 84.92 51.20 63.88
BioBERT-large 79.71 52.63 63.40

Abstract Level Label + Rationale

Method P R F1

Baseline 54.19 46.41 50.00
BioBERT-base 81.82 47.37 60.00
BioBERT-base* 82.54 49.76 62.09
BioBERT-large 76.81 50.72 61.10

Table 1: Comparison of abstract retrieval methods on
the dev set of SCIFACT.

binary classification approach to identify rationale
sentences from retrieved abstracts for the claim at
hand. Given a sentence-pair <claim c, sentence s>,
the model, which was trained to do abstract selec-
tion in last step, is now trained to predict whether
the sentence at hand is correctly identified for the
claim at hand.

Table 2 reports results of the baseline, BioBERT-
base, BioBERT-base* and BioBERT-large models
on rationale selection. We also present sentence
level pipeline performance with oracle cited ab-
stracts 3 and baseline label predictor.

Our method leads to an increase in precision
score, a small decrease in recall score and a
small increase in F1 score. Interestingly, the
three BioBERT variants don’t show clear perfor-
mance differences, despite substantial differences
in model sizes. A small improvement on down-
stream sentence-level performance is achieved
overall.

4.3 Label Prediction
For label prediction, we use the two-step approach
that leverages RoBERTa-large as described in §3.3.
This approach is denoted as TWO-STEP thereafter.
Table 3 reports performance results for the label

3It includes abstracts that are of "SUPPORT", "CON-
TRADICT" and "NOT_ENOUGH_INFO" relations to the
claims’ veracity. It is also referred as oracle abstracts with
NOT_ENOUGH_INFO (NEI) setting in SCIFACT dataset
paper.



Sentence Selection

Method P R F1

Baseline 64.99 70.49 67.63
BioBERT-base 77.97 62.84 69.59
BioBERT-base* 74.38 65.03 69.39
BioBERT-large 77.08 63.39 69.57

Downstream Performance

Sentence Level Selection Only

Method P R F1

Baseline 74.48 59.02 65.85
BioBERT-base 83.81 56.56 67.54
BioBERT-base* 80.84 57.65 67.30
BioBERT-large 80.75 58.47 67.83

Sentence Level Selection + Label

Method P R F1

Baseline 66.90 53.01 59.15
BioBERT-base 74.90 50.55 60.36
BioBERT-base* 72.41 51.64 60.29
BioBERT-large 72.08 52.19 60.54

Table 2: Comparison of rationale selection methods on
the dev set of SCIFACT.

prediction task with oracle cited abstracts and ora-
cle rationales. The baseline is the RoBERTa-large
three-way classifier used on VERISCI. Our TWO-
STEP method leads to a 4% increase in accuracy,
macro-F1 and weighted-F1 over the baseline. We
further present confusion matrices for each sys-
tem for analysis, where C stands for “CONTRA-
DICT”, N stands for “NOT_ENOUGH_INFO” and
S stands for “SUPPORT”. As the confusion ma-
trix shows, our method successfully improves the
overall predictions on the “CONTRADICT” class
without leveraging extra data.

Furthermore, Table 4 reports results on the
abstract-level label prediction with various settings
of upstream modules. Interestingly, both meth-
ods show noticeably decreased performance when
given an evidence of lower quality. From the oracle
evidence to the evidence retrieved by our system,
the baseline module’s F1 performance dropped by
19.70% and the TWO-STEP module dropped by
20.26% in absolute values; from the oracle evi-
dence to the evidence retrieved by the baseline
system, the baseline module’s F1 score dropped
by 30.14% and the TWO-STEP module dropped by
37.26% in absolute values.

Despite that, our TWO-STEP method always
outperforms the baseline method when given im-
proved evidence. Its F1 score is 2.02% - 2.58%
higher than the baseline on improved evidence re-
trieval settings. When given oracle cited abstracts

Label Prediction Performance

Method Accuracy Macro-F1 Weighted-F1

Baseline 81.93 80.19 81.85
TWO-STEP 85.98 84.69 85.84

Confusion Matrix of Baseline

C N S

C 47 17 7
N 6 104 2
S 8 18 112

Confusion Matrix of TWO-STEP

C N S

C 53 7 11
N 2 107 3
S 12 10 116

Table 3: Comparison of label prediction methods with
oracle cited abstracts and oracle rationales.

Oracle Abstract + Oracle Rationale

Method P R F1

Baseline 90.75 75.12 82.20
TWO-STEP 88.54 81.33 84.78

OurSystem Abstract + OurSystem Rationale

Method P R F1

Baseline 76.92 52.63 62.50
TWO-STEP 73.62 57.42 64.52

Baseline Abstract + Baseline Rationale

Method P R F1

Baseline 56.42 48.32 52.06
TWO-STEP 43.31 52.63 47.52

Table 4: Comparison of label prediction methods with
various upstream modules.

and oracle rationales, our method achieves 84.78%
F1 score.

4.4 Full Pipeline
Table 5 reports full pipeline performance on the
SCIFACT dev set. The baseline is the VERISCI
system. We compare pipeline systems with differ-
ent evidence retrieval models, i.e., BioBERT-base,
BioBERT-base* and BioBERT-large, combined
with the two-step label predictor using RoBERTa-
large.

Overall our system achieves substantial improve-
ments over the baseline. Across the evaluation
metrics, our precision scores are 15.75%-23.37%
higher than the baseline system, recall scores are
3.82%-14.21% higher and F1 scores are 10.11%-
16.08% higher than the baseline in terms of abso-
lute values. Interestingly, BioBERT-base obtains
the highest precision score, BioBERT-base* the



Label Only

System P R F1

Baseline 56.42 48.33 52.06
BioBERT-base + TWO-STEP 79.56 52.15 63.00
BioBERT-base* + TWO-STEP 78.91 55.50 65.17
BioBERT-large + TWO-STEP 73.62 57.42 64.52

Label+Rationale

System P R F1

Baseline 54.19 46.41 50.00
BioBERT-base + TWO-STEP 75.91 49.76 60.11
BioBERT-base* + TWO-STEP 73.47 51.67 60.67
BioBERT-large + TWO-STEP 69.94 54.55 61.29

Selection Only

System P R F1

Baseline 54.27 43.44 48.25
BioBERT-base + TWO-STEP 77.64 52.19 62.42
BioBERT-base* + TWO-STEP 72.00 54.10 61.78
BioBERT-large + TWO-STEP 72.76 57.65 64.33

Selection+Label

System P R F1

Baseline 48.46 38.80 43.10
BioBERT-base + TWO-STEP 68.29 45.90 54.90
BioBERT-base* + TWO-STEP 64.00 48.09 54.92
BioBERT-large + TWO-STEP 64.83 51.37 57.32

Table 5: Comparison of full pipeline performance on
the dev set of SCIFACT.

highest recall score and BioBERT-large the highest
F1 for most of metrics.

Table 6 compares full pipeline performance on
SCIFACT test set with models trained on the com-
bination of SCIFACT train set and dev set. We used
BioBERT-large evidence selector and two-step la-
bel predictor as our system due to its overall best
performance. This submission ranked No. 6 on the
leaderboard.

5 Discussion and Future Work

Our intuitive step-by-step binary classification sys-
tem achieves substantial improvements over the
baseline without demanding additional data or ex-
tra large models.

An improved evidence retrieval module has
made the main contributions to the performance
boost. Our system makes an effort to improve the
abstract retrieval module after applying a scalable
traditional information retrieval weighting scheme,
TF-IDF. Instead of handling it as a re-ranking task
and manually selecting thresholds (Pradeep et al.,
2020), we formulate it as a binary classification
task, which makes better use of the available train-
ing data and decreases the false positive rate effec-

Label Only

System P R F1

Baseline 47.51 47.30 47.40
OURSYSTEM 74.32 49.55 59.46

Label+Rationale

System P R F1

Baseline 46.61 46.40 46.50
OURSYSTEM 72.97 48.65 58.38

Selection Only

System P R F1

Baseline 44.99 47.30 46.11
OURSYSTEM 81.58 58.65 68.24

Selection+Label

System P R F1

Baseline 38.56 40.54 39.53
OURSYSTEM 66.17 47.57 55.35

Table 6: Full pipeline performance on SCIFACT’s test
set. OURSYSTEMuses BioBERT-large for abstract re-
trieval and rationale selection with two-step label pre-
diction, all trained on trained set and dev set.

tively. When applying a similar approach to ratio-
nale selection, our model, which is only trained on
the SCIFACT dataset, still achieves improvements
over the baseline model, which makes use of the
FEVER dataset first. Furthermore, our model is
less dependent on parameters than other systems,
which is ideal in practical settings where one would
like to apply the model on new datasets without
having to find the best parameters for the dataset at
hand.

In addition, our TWO-STEP label prediction
module also makes positive contributions to overall
improvements. The difference on the label predic-
tion performance is very noticeable on different up-
stream settings. Unsurprisingly, both methods have
the best performance with F1 scores higher than
80% on the oracle setting, which is the closest to
their training data. Interestingly, this performance
fluctuation leads to the following observation: a la-
bel prediction module that has better performance
on the oracle evidence doesn’t necessarily have
better performance when given the incorrect evi-
dence. Regarding our TWO-STEP label prediction
method, it shows that our neutral detector is not
robust enough on the pipeline setting. One possible
solution is to train it on evidence retrieved by pre-
vious modules rather than on the oracle evidence
so that it learns to optimise for the pipeline setting.

Nevertheless, this problem is inevitable for a



pipeline system that has multiple machine learning
modules, as errors in each of the modules will ac-
cumulate throughout the pipeline. A better system
design is desired such that it tackles the challenge
in a more systematic way. A promising approach
is to train a model to learn three subtasks in a mul-
titask learning manner so that it may optimise for
better overall performance.

6 Conclusions

In this paper, we proposed a novel step-by-step bi-
nary classification approach for the SCIVER shared
task. Our submission achieved an F1 score of
55.35% on the test set, ranking 6th among all the
submissions and 4th among all the teams. We show
that (1) concerning evidence retrieval, a classifica-
tion based approach is better than a ranking based
approach with manual thresholds; (2) two-step bi-
nary label prediction has better performance than
three-way label prediction with limited training
data; (3) a more systematic design of automated
fact-checking system is desired.
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A Appendix

Table 7 reports performance of using BERTscore
as a metric to do abstract retrieval. We chose Dis-
tilBERT as the BERT model for global ranking for
efficiency reasons, which was ran on a simgle GPU
for approximately 36 hours and it turned out to be
worse than TF-IDF.

We then tried various relevant BERT variants to
do reranking out of the top 30 abstracts with the
highest TF-IDF similarity. In general, with rea-
sonable large models that are trained on relevant
tasks, results are better than TOP 3 TF-IDF. How-
ever, the improvements remain trivial and it is not
comparable to our classification approach.

TOP K Global Ranking with DistilBERT

Method P R F1

TF-IDF TOP 1 60.11 54.07 56.93
BERTscore TOP 1 51.06 45.93 48.36
TF-IDF TOP 3 25.89 69.86 37.78
BERTscore TOP 3 23.58 63.64 34.41
TF-IDF TOP 30 03.39 91.39 06.54
BERTscore TOP 30 03.26 88.04 06.29

TOP 3 BERTscore Reranking under TOP 30 TF-IDF

Model P R F1

BERT-tiny 23.94 64.59 34.93
SciBERT 25.89 69.86 37.78
BioBERT-base 28.37 76.56 41.40
BioBERT-large 26.60 71.77 38.81
RoBERTa-large rationale selector 20.39 55.02 29.75
RoBERTa-large label predictor 25.89 69.86 37.78

Table 7: BERTscore abstract retrieval performance on
the dev set of SCIFACT.
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