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Abstract
As online false information continues to grow, auto-
mated fact-checking has gained an increasing amount 
of attention in recent years. Researchers in the field of 
Natural Language Processing (NLP) have contributed 
to the task by building fact-checking datasets, devis-
ing automated fact-checking pipelines and proposing 
NLP methods to further research in the development 
of different components. This article reviews relevant 
research on automated fact-checking covering both the 
claim detection and claim validation components.
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1  |  INTRODUCTION

While online content continues to grow unprecedentedly, the spread of false information online 
increases the potential of misleading people and causing harm. This leads to an increasing de-
mand on fact-checking, that is, a task consisting in assessing the truthfulness of a claim (Vlachos 
& Riedel,  2014), where a claim is defined as ‘a factual statement that is under investigation’ 
(Hanselowski, 2020). A number of fact-checking organisations have been founded in recent years, 
for example, FactCheck, PolitiFact, Full Fact, Snopes, Poynter and NewsGuard. Fact-checkers 
have conducted laborious manual fact-checking, that is, familiarise with the topic, identify the 
claim, aggregate evidence, check source credibility, verify the claim and its reasoning chain and 
check for fallacies (Hanselowski, 2020). However, the speed and efficiency of manual fact-check-
ing cannot keep up with the pace at which online information is posted and circulated. The 
journalism community can benefit from tools that, at least partially, automate the fact-checking 
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process (Cohen et al., 2011; Hassan, Arslan, et al., 2017; Konstantinovskiy et al., 2021; Thorne 
& Vlachos, 2018), particularly by automating more mechanical tasks, so that human effort can 
instead be dedicated to more labour-intensive tasks (Babakar & Moy, 2016). Restricting claims to 
those that are objectively fact-checkable makes the automation task more realistically achievable 
while reducing the volume of content needing manual fact-checking. Furthermore, recent pro-
gress in the fields of natural language processing (NLP), information retrieval (IR) and big data 
mining has demonstrated the potential for efficiently processing large-scale textual information 
online, which inspires automated fact-checking.

Researchers have developed valuable fact-checking datasets, pipelines and models, an effort 
which has also been supported by shared tasks, including RumourEval (Derczynski et al., 2017; 
Gorrell et al., 2018), CLEF CheckThat! (Barron-Cedeno et al., 2020; Elsayed et al., 2019; Nakov 
et  al.,  2018), ClaimBuster (Hassan, Zhang et  al.,  2017), FEVER (Thorne et  al.,  2019; Thorne, 
Vlachos, Christodoulopoulos, & Mittal, 2018), SCIVER (Wadden et al., 2020), Fake News Chal-
lenge (Pomerleau & Rao, 2017) and HeroX fact checking challenge (Francis & Fact, 2016).

With different major concerns, proposed pipelines take various forms. For instance, Claim-
Buster (Hassan, Zhang et al., 2017) designed a comprehensive pipeline of four components to 
verify web documents: a claim monitor that performs document retrieval, a claim spotter that 
performs claim detection, a claim matcher that matches a detected claim to fact-checked claims 
and a claim checker that performs evidence extraction and claim validation. A similar pipeline 
was proposed by CLEF CheckThat! (Nakov et al., 2021), which in its 2021 edition included three 
subtasks: firstly, perform claim detection to detect claims that are check-worthy; secondly, deter-
mine whether a claim has been previously fact-checked; and thirdly, perform claim validation 
to determine the factuality of the detected claims. While some pipelines include claim detec-
tion, some are only designed to tackle claim validation, for example, FEVER (Thorne et al., 2019; 
Thorne, Vlachos, Christodoulopoulos, & Mittal, 2018) and SCIVER (Wadden et al., 2020),1 as-
suming check-worthy claims are already at hand. Figure 1 depicts a comprehensive fact-check-
ing pipeline as discussed in this survey and consisting of two components: (1) a claim detection 
component, which looks for claims that need checking and tries to find matches between claims 
when they are related to the same fact-check and (2) a claim validation component, which re-
trieves the documents and rationales that can serve as evidence to fact-check a claim and ulti-
mately performs the verification task, producing a verdict.

In this article, we present a survey on automated fact-checking with special focus on claim de-
tection and claim validation, and is structured as follows. Section 2 focuses on the task of detect-
ing check-worthy claims, which is the very first task of a comprehensive automated fact-check-
ing pipeline. It also contains a brief overview of claim matching. Section 3 presents the task of 
claim validation, which typically involves addressing evidence retrieval and claim verification 
together. In Section 4, we discuss advantages and drawbacks of current automated fact-checking 
pipelines, with a focus on current challenges and promising future directions. Section 5 presents 
closely related NLP tasks. Conclusions are drawn in Section 6.

2  |  CLAIM DETECTION

Claim detection plays a crucial role in automated fact-checking systems as all other components 
need to rely on the output of this stage. It aims to relief the burden of identifying claims for 
fact-checkers and help them by minimising the volume of online content they need to deal with.
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2.1  |  Approaches

The claim detection component is responsible for selecting claims that need to go through the 
rest of the fact-checking pipeline due to needing to be checked, that is, needing verification. For 
instance, a factual statement such as ‘He voted against the first gulf war’ can be deemed a claim 
that should be fact-checked. In contrast, a piece of opinion such as ‘I think it's time to talk about 
the future’ is not a claim that should be fact-checked (Hassan, Arslan, et al., 2017).

Going further, one can also distinguish between check-worthy versus non-check-worthy 
claims (Nakov et al., 2021), as cases that being claims are worthy or not fact-checking. For exam-
ple, one could argue that ‘the government invested more than 10 billion last year in education’ 
is a claim that is worthy of fact-checking, whereas a claim such as ‘my friend had a coffee this 
morning for breakfast’ may not be worthy of fact-checking.

Researchers typically formulate the problem as one having a set of sentences as input (e.g., 
originating from a debate or conversation), and is tackled as a classification task, where a binary 
decision is made on whether each input sentence constitutes a claim or not, or a ranking task, 
where input sentences are ranked by check-worthiness, hence prioritising top claims on top po-
sitions of the list.
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2.2  |  Datasets

In recent studies, several datasets were built with the purpose of enabling training machine 
learning models to predict check-worthy claims, as shown in Table 1. The vast majority of data-
sets cover sentences pertaining to the political domain, as a result of events that synchronously 
occur with the United States elections. In contrast, the CheckThat! Lab released English and 
Arabic datasets that contain a small number of instances related to COVID-19 in early 2020.

In addition, publicly available datasets have a variety of sizes. For instance, ClaimBuster (Ars-
lan et al., 2020) and CT19-T1 (Atanasova, Nakov, Karadzhov, et al., 2019) are the largest datasets, 
while CW-USPD-2016 (Gencheva et al., 2017), CT-CWC-18 (Atanasova et al., 2018), CT20-AR 
(Hasanain et al., 2020) and FactRank (Berendt et al., 2020) are a degree of magnitude smaller, 
followed by other smaller datasets.

Datasets have binary-class for either single-label or multi-labels, depending on the annota-
tion process. The annotation process comes in diverse types. Some datasets are automatically 
built by collecting claims from fact-checking websites, while other datasets rely on manual an-
notations given specific definitions of check-worthiness. Crowd-sourcing platform has also been 
demonstrated to be helpful (Hassan et al., 2015).

Moreover, the majority of datasets are available in the English language as opposed to a small-
er number of datasets in the Arabic language. Most of these Arabic datasets are generated from 

ZENG et al.4 of 21

Name Size Annotation type Language

ClaimBuster (Arslan 
et al., 2020)

23,533 sentences Manual English

CW-USPD-2016 
(Gencheva et al., 2017)

5415 sentences From existing annotation English

TATHYA (Patwari 
et al., 2017)

15,735 sentences From existing annotation English

Konstantinovskiy 
et al. (2021)

5571 sentences Based on the annotation 
scheme, sentences 
labelled into seven 
categories then 
grouped into two 
categories

English

CT-CWC-18 (Atanasova 
et al., 2018)

8946 (En), 7254 (Ar) 
sentences

From existing annotation English/partially 
translated to Arabic

CT19-T1 (Atanasova, 
Nakov, Karadzhov, 
et al., 2019)

23,500 sentences From existing annotation English

Shaar, Nikolov 
et al. (2020)

962 tweets Manual English

CT20-AR (Hasanain 
et al., 2020)

7.5k tweets Manual Arabic

TrClaim-19 (Kartal & 
Kutlu, 2020)

2287 tweets Manual Turkish

FactRank (Berendt 
et al., 2020)

7037 sentences Manual Dutch

T A B L E  1   Check-worthiness claim detection datasets



translations of originally English datasets, except for CT20-AR, which is originally Arabic con-
tent. In addition, there is one dataset in Dutch and another one in Turkish, while datasets in 
other languages are not yet available.

2.3  |  Check-worthy claim detection

ClaimBuster is the first automated fact-checking system that consists of integrated components 
tackling the entire fact-checking pipeline, starting off from the claim detection component. Its 
claim detection component called ‘claim spotter’ classifies input sentences into one of (1) a fac-
tual claim, (2) an unimportant factual claim or (3) a non-factual claim. This in turn assists fact 
checkers by prioritising the most check-worthy claims by ranking them based on accuracy meas-
ures such as Precision at k (P@K; Hassan, Zhang et  al.,  2017). To develop this, a multi-class 
support vector machine (SVM) classifier was built which used features such as bags-of-words, 
Part-Of-Speech (POS) tags and entity types (ET). The model achieved competitive performance 
and was considered as the baseline to beat in subsequent works (Hassan, Arslan, et al., 2017).

Another model called ‘CNC’ (i.e., ‘Claim/not Claim’; Konstantinovskiy et al., 2021) builds on 
top of InferSent embeddings (Conneau et al., 2017), combining them with POS tags and named 
entities found in texts, which are fed to a Logistic Regression classifier. Authors of CNC had 
as their main goal the improvement of the recall score achieved by their system, arguing that 
fact-checkers do not want to miss out any claims (no false negatives) while they can deal with 
some false positives. While improving in terms of recall, CNC also achieved superior perfor-
mance in F1 score.

Apart from traditional machine learning models, neural networks have also been studied for 
the claim detection task. For example, in the CheckThat! Lab 2019 shared task, LSTM neural 
networks and Feed forward neural networks were the most effective models used by the top two 
participants. Along with the use of neural networks, top participants also showed the useful-
ness of context (i.e., surrounding sentences) in improving claim detection performance (Elsayed 
et al., 2019). The use of context was studied in more detail in another work conducted outside the 
shared task, in this case by (Atanasova, Nakov, Màrquez, et al., 2019). They studied the inclusion 
of context and discourse features along with sentence-level features. They used a Feed-Forward 
Neural Network (FNN) as the model, which was then evaluated as a ranking task, proving the 
effectiveness of context and discourse features.

While all aforementioned works focused on English claims, there have also been efforts in 
other languages. For example, the ClaimRank model (Jaradat et al., 2018) was tested on Arabic 
claims (translated from claims originally in English). The Arabic claim detection model used 
Farasa (Abdelali et al., 2016) for tokenisation, POS tagging, as well as MUSE embeddings. The 
first experiments on original Arabic data (rather than translated) were conducted in the Check-
That! 2020 shared task. Most participants proposed approaches fine-tuning pre-trained language 
models. For instance, the top-performing participant fine-tuned AraBERT v0.1 with neural net-
works (Williams et  al.,  2020). Likewise Hasanain and Elsayed  (2020) fine-tuned multilingual 
BERT (mBERT) with different classification models. Another recent effort, called FactRank (Ber-
endt et al., 2020), focused on claim check-worthiness detection for the Dutch language, in this 
case using a convolutional neural network (CNN) along with Platt scaling for an SVM model and 
a softmax to obtain the degree of check-worthiness.

Given that methods for claim detection have been applied in different settings or on different 
datasets, it is difficult to establish what the state-of-the-art model is today. However, the best way 
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of determining the best-performing model is to look at the leaderboard in the CheckThat! shared 
task of the most recent edition.

2.4  |  Claim matching

Another task that has recently emerged is claim matching, also referred to as identifying previ-
ously fact-checked claims. For a claim spotted in the claim detection component, claim matching 
consists in determining whether this is a claim that exists in the database and can be resolved 
by a previous fact-check. The task is formulated as follows: given a check-worthy claim as in-
put, and having a database of previously fact-checked claims, it consists in determining if any 
of the claims in the database is related to the input; in this case, the new claim would not need 
fact-checking again, as it was fact-checked in the past. It is normally framed as a ranking task, 
where claims in the database are ranked based on their similarity to the input claim (Shaar, Bab-
ulkov et al., 2020). This task comes right after the claim detection component, to determine if 
the claim is new, and can help avoid the need for running the claim validation component for a 
particular claim when it is found in the database.

There are two released datasets: one based on PolitiFact and the other based on Snopes. Ini-
tial explorations were conducted on using BM25 (Robertson et al., 1994) and BERT-based mod-
els respectively as well as building a SVM reranker with features from both approaches (Shaar, 
Babulkov et al., 2020). Otherwise, CLEF2020-CheckThat! held a shared task on Verified Claim 
Retrieval which uses the Snopes dataset. While the baseline system is a simple BM25 system, 
shared task participants explored various scoring functions, including unsupervised approaches 
such as Terrier and Elastic Search scores, classic supervised models such as SVM and various 
BERT-based models (Shaar, Nikolov et al., 2020). Buster.ai, the winning team, fine-tune a RoB-
ERTa (Liu, Ott, et al., 2019) model on the task which was first fine-tuned on other fact-checking 
datasets (Bouziane et al., 2020). Team UNIPI-NLE, achieving close performance to the winning 
team, performed two cascade fine-tunings on a sentenceBERT (Reimers & Gurevych, 2019) mod-
el (Passaro et al., 2020).

3  |  CLAIM VALIDATION

As a component of the automated fact-checking pipeline, claim validation is formulated as ‘the 
assignment of a truth value to a claim made in a particular context’ (Vlachos & Riedel, 2014).

3.1  |  Approaches

In order to fulfil the task of claim validation, two different major approaches to verification have 
emerged: (1) the claim is verified against textual references such as documents from Wikipedia 
(Thorne et al., 2019; Thorne, Vlachos, Christodoulopoulos, & Mittal, 2018); (2) the claim is ver-
ified against existing knowledge bases (Shi & Weninger, 2016; Syed et al., 2019). Both approach-
es assume their references are reliable. The first approach may limit evidence to only trusted 
resource such as Wikipedia, fact-checking websites, peer-reviewed academic papers and gov-
ernment documents, achieving substantial coverage of information. However, the second ap-
proach faces bigger challenges in terms of coverage of reliable information. Existing knowledge 
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bases tend to be too small to cover sufficient information for claim validation purposes (Azmy 
et al., 2018; Mendes et al., 2012; Pellissier Tanon et al., 2020). Attempts have been made to auto-
matically populate knowledge bases (Adel, 2018; Balog, 2018; Mesquita et al., 2019; Nakashole & 
Weikum, 2012) but this method has the risk of further introducing unreliable noise and makes 
it harder to maintain the knowledge bases. Due to its maturity and reliability, our survey focuses 
on the first approach.

There have been a number of shared tasks focused on claim validation in slightly differ-
ent ways. One of the major differences is whether the final verification step is reliant on previ-
ously identified pieces of evidence (such as Wikipedia documents or scientific articles) or it is 
instead reliant on the stances expressed by users (e.g., by aggregating supporting or opposing 
stances towards a story in social media). Of those relying on evidence, well-known shared tasks 
include FEVER (Thorne, Vlachos, Christodoulopoulos, & Mittal, 2018) and SCIVER (Wadden 
et al., 2020), both of which perform different forms of evidence retrieval first and then perform 
claim validation based on that evidence. On the other hand, both UKP Snopes (Hanselowski 
et al., 2019) and RumourEval (Derczynski et al., 2017; Gorrell et al., 2018) proposed to tackle the 
task by retrieving texts relevant to a story, determining the stance of those texts afterwards, to 
ultimately classify the veracity value of the story.

3.2  |  Datasets

The NLP community has developed valuable datasets to progress research in automated claim 
validation, though with common issues of being synthetic and imbalanced. As shown in Table 2, 
recent datasets are not only growing in size, but they also attempt to capture naturally occurring 
sentences, include context and metadata, cover different domains and offer evidence chains.

3.3  |  Evidence retrieval

Evidence retrieval is conventionally addressed in two steps: document retrieval and rationale 
selection. Document retrieval is the task of retrieving relevant documents that supports the pre-
diction of a claim's veracity. Rationale selection is the task of selecting directly relevant sentences 
out of the retrieved documents to get final supporting evidence for claim verification.

3.3.1  |  Document retrieval

Deeply influenced by IR research, the majority of work in the literature addresses it as a ranking 
problem consisting in retrieving the top k documents. Various combination of Named Entities, 
Noun Phrases and Capitalised Expressions from the claim were used to query search APIs such 
as Google or Wikipedia and search servers (Thorne, Vlachos, Cocarascu, et al., 2018), when par-
ticipating in the FEVER shared task. Metadata, such as page viewership statistics is helpful to 
rank webpages (Nie et al., 2019). However, when search engines are not available, such as in the 
SCIVER shared task, the majority of effort goes into exploring similarity metrics that are used 
as a proxy to determine the documents' relevance to a claim. TF-IDF similarity is a common 
baseline (Malon, 2018; Wadden et al., 2020) and BM25 (Robertson et al., 1994) is demonstrat-
ed to be effective (Pradeep et al., 2021). When dealing with a specific domain, in-domain word 
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Name

Number 
of claims 
or claim-
evidence 
pairs Domains Details

PolitiFact (Vlachos & 
Riedel, 2014)

106 claims Politics Very small; metadata and evidence of 
various forms

Emergent (Ferreira & 
Vlachos, 2016)

300 claims News Very small; 2595 associated 
documents

LIAR (Wang, 2017) 12,836 claims Politics Medium; metadata

Snopes (Popat et al., 2017) 4956 claims Snopes website Medium; 30 Google retrieved 
documents for each claim

FEVER (Thorne, Vlachos, 
Christodoulopoulos, & 
Mittal, 2018)

185,445 claims Wikipedia Big; associated Wikipedia evidence

LIAR-PLUS (Alhindi 
et al., 2018)

12,836 claims Politics Medium; automatically extracted 
justifications

Perspectrum (Chen, 
Khashabi, et al., 2019)

907 claims Debates Small; evidence and perspectives

UKP Snopes 
(Hanselowski 
et al., 2019)

6422 claims Snopes website Medium; associated evidence

MultiFC (Augenstein 
et al., 2019)

34,918 claims Fact-checking websites Medium; metadata and 10 Google 
retrieved webpages for each claim

Scifact (Wadden 
et al., 2020)

1409 claims Scientific papers Small; associated documents

PolitiHop (Ostrowski 
et al., 2020)

500 claims Politics Very small; evidence chains for multi–
hop reasoning

WikiFactCheck-English 
(Sathe et al., 2020)

124,821 claims Wikipedia Big; context and evidence

Climate-FEVER 
(Diggelmann 
et al., 2021)

1535 claims Climate Medium; 7675 claim-evidence pairs 
with climate related claims verified 
against Wikipedia evidence

COVID-fact (Saakyan 
et al., 2021)

4086 claims COVID-19 Medium; 1296 supported claims from 
r/COVID19 subreddit and 2790 
automatically generated refuted 
claims

Vitamin-C (Schuster 
et al., 2021)

488,904 pairs Wikipedia Big; contrastive evidence from 
Wikipedia edits

FEVEROUS (Aly 
et al., 2021)

87,026 claims Wikipedia Biggest; evidence collected from 
both structured and unstructured 
information on whole Wikipedia

T A B L E  2   Claim validation datasets



embeddings are also a promising option, for example, BioSentVec (Chen, Peng, & Lu, 2019) for 
the SCIFACT dataset (Li et al., 2021).

Instead of completely relying on unsupervised methods, improvements have been achieved 
by reranking based on supervised learning on top of a large number of retrieved documents 
(Pradeep et al., 2021).

3.3.2  |  Rationale selection

Keyword matching, sentence similarity scoring and supervised ranking are common approaches 
to rationale selection (Thorne, Vlachos, Cocarascu, et al., 2018). Similar to document retrieval, 
attempts typically use one of these approaches or a combination of them to get a ranking score 
and select top E k sentences as rationale with a manual choice of the E k value (Pradeep et al., 2021).

Most of studies in the literature conduct evidence retrieval by addressing document re-
trieval and rationale selection in a pipeline manner, which ignores valuable information across 
sentences.

3.4  |  Claim verification

Claim verification is commonly addressed as a text classification task by NLP researchers. Giv-
en a claim under investigation and its retrieved evidence, models need to reach a verdict of the 
claim, which may be ‘SUPPORT’, ‘CONTRADICTION’ or ‘NOT ENOUGH INFORMATION’.  
Some other datasets (Hanselowski et  al.,  2019; Wang,  2017) include other labels such as  
‘mostly-true’, ‘half-true’, ‘pants-fire’, ‘most false’, ‘most true’ and ‘other’, whose finer granularity is 
more difficult to tackle through automated means and are sometimes collapsed into fewer labels. 
An important observation here is the difference in the types of labels used by different studies. 
Some studies rely on truth values (e.g., true, false and half-true), determining the veracity value 
of a claim. Others refer to the concept of support instead (i.e., support and contradict), which 
instead determine whether there is an agreement between the claim and the reference. The latter 
avoids making an explicit connection with truthfulness, looking instead at the alignment of a 
claim with respect to a given reference.

The task of claim verification may be essentially addressed as a recognising textual entail-
ment (RTE) task, that is, ‘deciding, given two text fragments, whether the meaning of one text is 
entailed (can be inferred) from another text’ (Dagan et al., 2009) or a natural language inference 
(NLI) task, that is, ‘characterising and using semantic concepts of entailment and contradiction 
in computational systems’ (Bowman et al., 2015).

Given that claim verification is predominantly addressed as a RTE or NLI task, we present 
a brief overview of them below. The RTE task, which dates back to 2005, focuses on detecting 
whether the hypothesis E h is entailed by a given text t or not, which corresponds to ‘SUPPORT’ or 
not. Proposed models may take a linguistic approach, a statistical approach, a machine learning 
approach or a hybrid version of them. The NLI task, equipped with many large-scale labelled 
datasets, has powered large neural models to be the dominant approach. State-of-the-art models 
are large pre-trained language models that are fine-tuned on large NLI datasets.
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3.4.1  |  Recognising textual entailment

Textual entailment is defined as a relation between a text E T  and a hypothesis E H . Formal semantics 
defines that a text t entails hypothesis E h if E h is true in every possible circumstance where t is true 
(Chierchia & McConnell-Ginet, 2000). This definition, as well as many other formal linguistic 
theories, is theoretically sound but practically too rigid to handle uncertainty. In practical NLP 
context, we define entailment to include cases where the truth value of hypothesis E h is highly 
plausible given text t , rather than absolutely certain (Dagan et al., 2009). In other words, ‘text t en-
tails hypothesis E h if, typically, a human reading t would infer that E h is most likely true’ (Bar-Haim 
et al., 2014). In contrast to a formal theoretical definition, this somewhat informal definition of 
entailment allows and requires common sense background knowledge.

The task of RTE started as a two-way classification of deciding whether hypothesis E h 
is entailed/supported by text t or not (Bar-Haim et al.,  2006; Dagan et al.,  2005; Giampiccolo 
et al., 2007). After the notion of ‘contradiction’, that is, ‘the negation of the hypothesis E h is en-
tailed by the text t ’ is introduced (de Marneffe et al., 2008), the RTE task became a three-way 
classification task of predicting labels of a text pair out of ‘ENTAILMENT’, ‘CONTRADICTION’ 
and ‘UNKNOWN’ (Giampiccolo et al., 2008).

Driven by a yearly RTE challenge from 2005 to 2011, the NLP community developed some 
useful datasets for the task, specifically the RTE1–RTE7 datasets. Despite being relatively small 
and imbalanced, these datasets enabled developing and evaluating of various approaches. 
While lexical-based and syntax-based approaches struggled to achieve good results (Bar-Haim 
et al., 2014; Dagan et al., 2009), machine learning approaches achieved reasonable performance, 
often combined with logical or probabilistic methods.

One of the earlier models attempted to feed deep semantic features generated by first-order 
theorem prover and finite model builder into a machine learning classified to make predictions 
(Bos & Markert, 2006). Surprisingly, the deep semantic features failed to outperform shallow se-
mantic features. This is likely due to the models' naïve and rigid representation of sentences, lack 
of background knowledge and flawed sample distribution of the dataset.

Another intuitive approach is to first induce representations of text snippets into a hierar-
chical knowledge representation and then use a sound inferential mechanism to prove semantic 
entailment (de Salvo Braz et al., 2006). Despite its sound and tangible system design, this model 
only achieved an overall accuracy of 65.9%E  .

Furthermore, the NatLog system deals with the problem in three stages. It first conducts 
linguistic analysis, then aligns the dependency graph of the text t and the hypothesis E h , finally 
uses a decision tree classifier to perform entailment inference based on antonyms, polarity, graph 
structure and semantic relations (Chambers et al., 2007). This NatLog system trades low recall 
(31.71 on RTE3 test set) for higher precision (68.06 on RTE3 test set).

To help address the low recall achieved by first-order rules, the class of pair feature spaces was 
introduced (Zanzotto et al., 2009). It allowed the model to enrich the sentence-pair with ‘place-
holders’ and then generate first-order rewrite rules to relax the rigidness. This model achieved 
around 68%E  overall accuracy on RTE3.

Moreover, COGEX developed a system that first transforms the text into three-layered seman-
tically-rich logic form representations, then generates a set of linguistic and world knowledge 
axioms, and searches for a proof of entailment (Tatu & Moldovan, 2007). This system achieved 
an overall accuracy of 72.25%E  .

Overall, many inspiring hybrid models of logical inference and machine learning methods 
were developed for RTE challenges. Though they did not achieve perfect performance, we believe 
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they have great potential once equipped with better text representations and more powerful neu-
ral models.

3.4.2  |  Natural language inference

More recently, NLI is proposed as ‘the problem of determining whether a natural language hy-
pothesis E h can reasonably be inferred from a given premise E p ’ (Bowman et al., 2015; MacCartney 
& Manning, 2009). Noticeably, the definition of NLI is very similar to RTE and researchers tend 
to mention them together when addressing the problem.

Despite that, NLI datasets have improvements over RTE datasets. Earlier RTE datasets, pub-
lished before the notion of ‘CONTRADICTION’ attracted enough attention, only have binary la-
belling of ‘ENTAILMENT’. In contrast, NLI datasets all include three-way labelling that includes 
‘ENTAILMENT’, ‘CONTRADICTION’ and ‘UNKNOWN’. Furthermore, recent NLI datasets have 
larger size, more balanced label distribution and cover various domains. Table 2 presents NLI 
datasets that are potentially useful for claim verification.

With their large size and balanced design, NLI datasets have powered large neural network 
models, which has become the dominant approach. The common practice is to fine-tune a large 
pre-trained language model on the target NLI dataset, which may or may not be coupled with 
small task-specific techniques. Compared with traditional approaches, this approach improved 
text representations, achieved better generalisability and allowed more complex computing with-
out relying on hand-crafted rules.

Current state-of-the-art models on NLI datasets are BERT (Devlin et  al.,  2019), RoBERTa 
(Liu, Ott, et al., 2019), MT-DNN (Liu, He, et al., 2019), ALBERT (Lan et al., 2020) and T5 (Raffel 
et al., 2020).

4  |  DISCUSSION AND CHALLENGES

In this section, we discuss current progress in each of the components of the automated 
fact-checking task, as well as highlight the main open challenges.

4.1  |  Claim detection

4.1.1  |  Conceptual definition of claim

The definition of claim check-worthiness is brief (Allein & Moens, 2020). Full Fact describe it 
as ‘an assertion about the world that can be checked’. In contrast (Konstantinovskiy et al., 2021), 
mentioned this definition is not enough to decide whether this claim is worthy for check or 
not. Similarly, Berendt et al. (2020) declared that not every factual claim will be verified by fact 
checkers.
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4.1.2  |  Narrow domains

Claims in the political domain are dominating the interest of journalists and researchers, as can 
be seen in existing datasets. As an example Wright and Augenstein (2020) investigated the de-
velopment of a claim check-worthiness detection method that would consistently perform over 
different domains, in this case rumours on Twitter, Wikipedia citations and political speeches. 
However, the method showed important challenges in trying to perform well across domains. 
Recent research in claim detection has expanded to focus on health claims too, particularly ow-
ing to COVID-19.

4.1.3  |  Annotation issues

Labelling of sentences as claims or non-claims is generally done manually by non-experts (see 
Table 1). An alternative to this is to derive labels from previously fact-checked claims collected 
from fact-checking websites. The main caveat of this approach is that fact-checking websites 
only list claims, rather than non-claims, which means that one needs to develop models that 
only leveraged instances of the positive class, that is, positive unlabelled learning (Wright & 
Augenstein, 2020).

4.1.4  |  Imbalanced datasets

The majority of datasets are imbalanced where not check-worthy claims outnumber check- 
worthy claims. While this is possibly due to the nature of the task, existing models can have a  
tendency to overfit due to this imbalance, which calls for more research to tackle the problem. For 
example, in the CheckThat! Lab 2020 (Williams et al., 2020), attempted to mitigate the problem 
of overfitting by retraining the model by resampling the larger number of positive instances that 
were augmenting data through translation between Arabic and English (Williams et al., 2020).

4.2  |  Claim validation

Despite the noticeable progress, current automated claim validation systems also face unique 
challenges and desire improvements over several key aspects: datasets quality, system integrity 
and model interpretability.

4.2.1  |  Datasets quality

State-of-the-art systems heavily rely on training large language models, which require large-
scale, high-quality, labelled datasets that are expensive and may be unrealistic for specific do-
mains. Despite the great contributions recent datasets have made, they tend to be imbalanced 
and somewhat synthetic, which are not ideal for model training. We believe future high-quality 
datasets will continue to help progress the field.
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4.2.2  |  System scalability and integrity

Proposed automated claim validation systems cover a range of relevant tasks. Though a few of 
them try to jointly handle rationale selection and claim verification (Hidey & Diab,  2018; Li 
et  al.,  2021), most of them are pipeline systems that deal with subtasks separately. Improved 
scalability and integrity is desired.

Large pre-trained language models, the current dominant approach of various relevant tasks, 
requires lots of computing resources to train and inference. The scalability and accessibility of 
the proposed systems remain inferior.

Otherwise, increased system integrity is desired. Pipeline design has its inevitable disadvan-
tage: downstream components can only make inferences on upstream results and errors accu-
mulate throughout the pipeline. For instance, a claim verification component that takes the re-
trieved evidence and the detected claim as input will perform poorly with low-quality evidence or 
claims that are not checkable. Furthermore, the popular three-way label prediction approach is 
not the best approach for claim verification. Models struggle particularly to predict contradiction 
relation due to a lack of training data in this class, which accumulates errors across classes. For 
example, a model may predict a claim to be ‘NO INFO’ while it should be ‘CONTRADICT’, which 
makes it a false positive for the ‘NO INFO’ class and a true negative for the ‘CONTRADICT’ class. 
Preliminary research splitting the three-way classification into two binary classifications (Zeng 
& Zubiaga, 2021) is likely to help avoid such errors. Moreover, current approaches leave no space 
for aggregating evidence across sentences.

We believe a more compact overall system design is desired for automated claim validation 
such that it handles subtasks in a systematic way. We believe a promising direction is to train a 
model to learn all involved tasks in a multitask learning manner so that it may optimise for better 
overall performance.

4.2.3  |  Model interpretability

Neural networks are robust but struggle with interpretability and generalisability (Duan 
et al., 2020), which is of particular importance for automated claim validation. Underwhelming 
model interpretability may induce an increased probability of models making the right predic-
tion based on the wrong evidence. In contrast, symbolic systems that are unfortunately fragile 
and inflexible have strong interpretability and abstraction. Naturally, building a neural-symbolic 
system that integrates neural networks with symbolic logic becomes an interesting direction. 
In a nutshell, neural-symbolic systems  =  connectionist machine  +  logical abstractions (Besold 
et al., 2017).

Researchers have proposed various architectures that incorporate first-order logic into neural 
networks. A recent study proposed a general framework capable of enhancing neural networks 
with declarative first-order logic (Hu et al., 2016). Another study explored a symbolic interme-
diate representation for neural surface realisation (Elder et al., 2019), that is similar to first-order  
logic. Moreover, a recent attempt adapted module networks to model natural logic operations,  
which is enhanced with a memory component to model contextual information (Feng et al., 2020). 
Furthermore, RuleNN (Sen et  al.,  2020) is developed to tackle sentence classification where  
models are in the form of first-order logic, and achieved performance, that is comparable to some 
neural models.
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Neural-symbolic methods have a fascinating potential of attaining interpretability from sym-
bolic models and robustness from neural models makes. We believe that designing and imple-
menting neural-symbolic methods for various tasks of automated fact-checking is promising and 
of particular interest to our society.

5  |  RELATED TASKS

There are some other popular tasks in NLP which are also related to the accuracy, verifiability 
and credibility of information, which we briefly discuss next as topics recommended for further 
reading:

5.1  |  Fake news detection

It is the task of determining whether a news article on the web is accurate or not (Shu et al., 2017). 
Proposed classification approaches are typically centred on shallow features of the articles: 
n-grams, characters, stop words, POS tags, readability scores, term frequency, etc. Some more 
advanced approaches use additional metadata. However, these approaches are more likely to 
merely capture patterns of different article styles, rather than to sensibly distinguish reliable and 
unreliable articles (Hanselowski, 2020).

5.2  |  Rumour detection

It is the task of identifying unverified reports circulating on social media. Predictions are typical-
ly made on language subjectivity and metadata on social media (Zubiaga et al., 2018). Despite the 
relevance of these features, the truth value of a claim does not directly depend on these features.

5.3  |  Clickbait detection

Being considerably different from automated fact-checking, clickbait detection does not re-
quire external evidence. Approaches with relatively shallow linguistic features (Chakraborty 
et al., 2016; Chen et al., 2015; Potthast et al., 2016) have yielded reasonable performance.

5.4  |  Commonsense reasoning

To perform commonsense reasoning (Storks et al., 2019), the model needs to be able to do reason-
ing beyond the explicit information given in sentence pairs, which is highly valued in automated 
fact-checking (Thorne & Vlachos, 2018). As a new frontier of artificial intelligence, novel studies 
have investigated learned knowledge in pre-trained language models, commonsense integration 
from external knowledge bases, symbolic knowledge incorporation, etc. However, these tasks are 
currently under investigation and the field calls for major breakthroughs. For more information, 
we refer to a recent survey (Storks et al., 2019) and a tutorial (Sap et al., 2020).
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6  |  CONCLUSIONS

In this article, we present a survey on automated fact-checking with special focus on claim de-
tection and claim validation. Substantial progress has been made by applying large pre-trained 
language models through designed pipelines, but numerous open challenges still need further 
research. Claim Detection faces challenges from conceptual definition, narrow domains, anno-
tation issues and imbalanced datasets. In addition, improvements over datasets quality, system 
integrity and model interpretability are desired for claim validation.
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ENDNOTE
	1	 The task of claim validation is referred to as fact-checking by some papers in the literature.
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