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Abstract

Despite the increasing interest in cyberbullying detection, ex-
isting efforts have largely been limited to experiments on
a single platform and their generalisability across different
social media platforms has received less attention. We pro-
pose XP-CB, a novel cross-platform framework based on
Transformers and adversarial learning. XP-CB can enhance
a Transformer leveraging unlabelled data from the source
and target platforms to come up with a common represen-
tation while preventing platform-specific training. To vali-
date our proposed framework, we experiment on cyberbully-
ing datasets from three different platforms through six cross-
platform configurations, showing its effectiveness with both
BERT and RoBERTa as the underlying Transformer models.

Introduction

Cyberbullying is a form of bullying that is perpetrated
through online devices (Smith et al. 2008). With the growth
in usage of digital devices and Internet platforms such as
social media, cyberbullying has become a major problem
worldwide (Nixon 2014). This has motivated research in cy-
berbullying detection as the predictive task aiming to iden-
tify cyberbullying posts for enabling harm prevention (Rosa
et al. 2019).

Despite increasing efforts in furthering research in cy-
berbullying detection, existing methods have been predomi-
nantly investigated in a single social media platform. There
is however increasing evidence that classifiers built for and
tested on a particular social media platform tend to un-
derperform when applied to new platforms (Yin and Zu-
biaga 2021), limiting their generalisability. Generalisability
of models to other platforms has been barely studied, not
least in the context of cyberbullying detection (Mladenovié,
Os$mjanski, and Stankovi¢ 2021). Recent models for contex-
tualised embeddings based on Transformer models, such as
BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019),
are promising alternatives that can provide some generalis-
ability through their ability to transfer knowledge. Still, they
have been shown to struggle in situations where there is a
big drift from source to target data (Sun et al. 2019).

To increase the potential of Transformer models when
applied to a different social media platform, we propose
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XP-CB, a novel platform-aware adversarial framework for
cross-platform cyberbullying detection. By training a clas-
sifier on a source platform, for which labelled data is avail-
able, we aim to test its ability to generalise to a new tar-
get platform, for which labelled data is lacking. To miti-
gate the effects of platform data shift, the core intuition of
our proposed framework is to combine a multi-Transformer
embedding alignment strategy with an adversarial network
to reconstruct the target Transformer encoder. The target
Transformer encoder is forced to map the target input to the
source Transformer latent representation space, achieving
more similar content representations for both source and tar-
get platforms. The classifier trained on the source platform
data can be subsequently applied to the target platform. The
contributions of this paper can be summarised as follows:

* We propose XP-CB, which is to the best of our knowl-
edge the first framework for cross-platform cyberbully-
ing detection, operationalised by furthering the potential
of a Transformer model through the integration of an ad-
versarial network.

* To assess the potential of XP-CB, we perform cyberbul-
lying detection experiments in six cross-platform config-
urations involving three datasets from Formspring, Twit-
ter and Wikipedia. These platforms present very different
characteristics, particularly when it comes to the lenght
of the posts.

* We show that XP-CB can achieve state-of-the-art per-
formance by consistently outperforming a competitive
model as well as vanilla Transformer models.

Related work
Cyberbullying detection

Early methods to cyberbullying detection relied on rule-
based methods (Mahmud, Ahmed, and Khan 2008; Nahar
et al. 2014), focused on feature engineering (Hosseinmardi
et al. 2015) and used lexica (Dadvar et al. 2012; Van Hee
et al. 2018). More recent methods use word embeddings
along with deep learning models to build more discrimi-
native models, leading to improved performance (Yuvaraj
et al. 2021; Cheng et al. 2020). Still, this research predom-
inantly focuses on tackling cyberbullying on a single plat-
form, which limits the potential of transferring existing mod-



els to new, unseen social media platforms where labelled
data is lacking.

Cross-platform cyberbullying detection is still in its in-
fancy, which was pioneered by (Agrawal and Awekar 2018).
They studied the performance of a zero-shot transfer learn-
ing approach on three different social platforms (Wikipedia,
Twitter and Formspring), training and testing on different
platforms. Their study highlighted the challenging nature of
the problem, finding that the three datasets exhibit different
forms of cyberbullying with limited feature overlap across
platforms. By using a Bidirectional LSTM (BiLSTM) model
coupled with lists of swear words to enable transferability,
they still showed a substantial performance drop from run-
ning experiments within a platform, to switching to exper-
iments across platforms. To our knowledge, the only other
work on cross-platform cyberbullying detection is that by
Dadvar and Eckert (2020), who further tested the above BiL-
STM model on a new platform, YouTube, leading to similar
findings and highlighting the need for better models that fur-
ther generalisability across platforms.

Rather than finding an overlap of features, our aim with
XP-CB is to enable Transformer models the capacity of
defining a latent feature space that reconciles the differences
between the source and target platforms.

Adversarial networks

Adversarial adaptation methods have become increasingly
popular for domain adaptation, which seek to minimise the
variance between source and target data through an ad-
versarial objective (Tzeng et al. 2017). These methods are
motivated by Generative Adversarial Networks (Creswell
et al. 2018), which consist of two parts: (1) the Generator is
trained to generate synthetic instances in a way that confuses
the discriminator; and (2) the Discriminator, responsible in
turn for trying to distinguish the samples created by the gen-
erator. In the process of adversarial adaptation across diver-
gent data sources, the roles of synthetic instances and real in-
stances can be replaced with training samples and test sam-
ples, i.e. in cross-platform experiments, the role of the dis-
criminator becomes that of distinguishing if an instance be-
longs to the source or target platform (Creswell et al. 2018).

Inspired by this trend, we propose the integration of a
Transformer with an adversarial adaptation component for
the cross-platform cyberbullying detection task. We build
on ADDA (Adversarial Discriminant Domain Adaptation)
(Tzeng et al. 2017) as the adversarial component. ADDA is
a general network that enables combining a discriminative
model, weight sharing, and a GAN loss for effectively train-
ing a robust and adaptive Deep Neural Network (DNN).

XP-CB: Model architecture

XP-CB is an end to end framework (see Figure 1), whose
components can be trained at different times. The overarch-
ing objective of XP-CB is to perform dual alignment, which
are operationalised by different components:

* The embedding alignment is responsible for injecting
different cross-platform fine-tuning strategies into the

framework components, which aims to improve the en-
coder’s adaptability to new platforms. It includes three
subcomponents: Input Length Optimiser, Hidden States
Selector and Adaptive Batch Normalisation classifier.

* The Adversarial alignment is responsible for integrat-
ing the GAN methodology and the ADDA framework to
align the target input representation to the source latent
embedding space, which include the Encoder Measurer
and Discriminator subcomponents.
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Figure 1: XP-CB Model Architecture. Red: source platform
data flow. Green: target platform data flow. Black: test data
flow. Blue (dashed): how the loss is fed back to the back
propagation algorithm. Orange (dashed): source encoder pa-
rameters, used to initialise the target encoder.

Input Length Optimiser. To deal with the different
lengths across platforms, a possible approach would be to
truncate the input content or take the average input length.
However, the text length can vary significantly across social
media platforms, which may lead to missing important in-
formation and to an increase in the divergence between the
inputs. To optimise the input length, we add the Input Length
Optimiser component that handles this that iterates through
different lengths in search of the optimal value.

Source Encoder & Target Encoder. The two encoders
for source and target platforms are based on Transformers
which are trained multiple times while being incrementally
adapted. First, using the labelled source dataset to train the
source encoder. Second, the source encoder will fully or par-
tially share parameters with the target encoder for initiali-
sation. Finally, the source and target encoders will jointly



perform adversarial adaptive training.

Hidden State Selector. The Hidden State Selector as-
sesses the transferability of each layer in the Transformer to
obtain the most transferable layers for pre-adversarial train-
ing and post-adversarial training.

Discriminator & Encoder Measurer. These two compo-
nents are combined to form an adversarial network to train
the target encoder. The learning goal consists in reconstruct-
ing the target encoder to map the target input representation
to the source input space, making it difficult for the discrim-
inator to determine which platform the input comes from.

The discriminator consists of two fully-connected layers
on top of the encoders. The two-layer feed forward network
is designed with Rectified Linear Unit (ReLU) activation
and 512 or 3072 hidden sizes for the first layer and Soft-
max activation for the output layer. We then adopt a super-
vised loss function from the ADDA framework (Tzeng et al.
2017).

During the experiments, we observed that when there is a
big platform data shift, gradient vanishing is common, such
as in the case of transferring between Twitter and Wikipedia.
To solve this issue, we add the Encoder Measurer compo-
nent. Its learning goal is to get a similar hypothesis when
the target encoder and the source encoder confront the same
source datasets. As the loss function, we adopt the Kull-
back-Leibler divergence (KLD) metric (Eguchi and Copas
2006). These losses (Discriminator loss and Encoder Mea-
surer loss) are then joined to train the target encoder.

Adaptive Batch Normalisation classifier. The Adaptive
Batch Normalisation (BN) classifier aims to reduce the dis-
tribution difference between the source and the target data by
adjusting the dimensionality of input representations from
source and target platforms. Similar to the discriminator
structure, a two-layer feed forward network is designed by
using ReLU activation. We adopt two methods to build the
first layer. Reduction consists in reducing the hidden states
to 512, while expansion consists in expanding it to 3072. For
the output layer, we use Softmax as the activation function.
Batch normalisation is added to standardise these inputs and
reduce the generalisation error, so as to increase the gener-
alisation ability of the classifier (Li et al. 2017).

Experiments
Datasets

We evaluate XP-CB on three widely-studied cyberbully-
ing datasets! from three social media platforms: Form-
spring (Reynolds, Kontostathis, and Edwards 2011), Twitter
(Waseem and Hovy 2016) and Wikipedia (Wulczyn, Thain,
and Dixon 2017). Where datasets provide finer-grained la-
bels for types of cyberbullying, we collapse them into a cy-
berbullying label. The text length of each platform (see Ta-
ble 1) varies greatly from a maximum length of 38 to 2,846;
so does the cyberbullying ratio ranging from 0.08 to 0.32.

"We restrict to cyberbullying datasets avoiding conflation with
related phenomena such as hateful / toxic / abusive content.

Table 1: Dataset statistics.

Formspring Twitter Wikipedia

#Posts 12,773 16,090 115,864
Max Length 1099 38 2832
Cyberbullying Ratio 0.08 0.32 0.11

Experiment Setup

We set up experiments in line with previous work (Agrawal
and Awekar 2018; Dadvar and Eckert 2020). We conduct six
cross-platform configurations for our experiments by defin-
ing all six possible combinations of source-target dataset
pairs. We focus on zero-shot settings, where the model
doesn’t see any labelled instances of the target platform. For
a fair comparison with previous work, we adopt the same
approach to mitigate the class imbalance by over-sampling
the training data from the bullying class thrice.

Transformer models. We test XP-CB with two dif-
ferent Transformer models: BERT _base (uncased) and
RoBERTa_base. We use the hyper-parameters recommended
by (Sun et al. 2019); Batch size: 16; Learning rate (Adam):
2e -5; Number of epochs: 4.

Baseline models. We compare our models with three
competitive baseline models: (1) the cross-platform BiL-
STM model with attention by Agrawal and Awekar (2018),
(2) BERT _base (uncased) and (3) RoBERTa_base.

Results

Table 2 shows the Macro-averaged F1 (Macro-F1) scores of
all models under study, including the state-of-the-art model
by Agrawal and Awekar (2018) (A&A) and the baseline
Transformer models, BERT and RoBERTa.

I Baselines I XP-CB

Source— Target|| A&A |BERT |RoBERTa||-BERT|-Roberta

In-platform

W — Tw | 093] 0.95 0.86 - -
WP — WP 0.87 | 0.86 0.88 - -
FS — FS | 0911 0.88 0.87 - -
Average  [|0.903|0.897| 0.870 | - | -

Cross-platform

FS — TW 0.03 ] 0.43 0.46 0.58 0.61
WP — TW 0.28 | 0.47 0.51 0.53 0.56

FS — WP 0.35] 0.74 0.78 0.81 0.82
TW — WP 0.10| 0.54 0.56 0.60 0.60

W —FS 0.07 | 0.63 0.66 0.71 0.71
WP — FS 0.58 | 0.78 0.78 0.88 0.86

Average  [|0.235/0.598| 0.625 | 0.685 | 0.693

Table 2: In-platform and cross-platform classification re-
sults. FS: Formspring; WP: Wikipedia; TW: Twitter.
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Figure 2: BERT t-SNE. Red:source negative;Green:source positive; Blue:target negative; Yellow: target positive.
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Figure 3: XP-CB t-SNE. Red:source negative;Green:source positive; Blue:target negative; Yellow:target positive.

A look at the in-platform classification results shows the
strong potential of the A&A model, achieving slightly better
average performance than Transformer models BERT and
RoBERTa, despite this improvement not being consistent
for all datasets. While BERT and RoBERTa models perform
best for Twitter and Wikipedia respectively, it is the A&A
model that achieves the highest performance on Formspring.
The high performance scores of these three models however
drops substantially when we look at cross-platform exper-
iments, with absolute performance drops of 67% (A&A),
30% (BERT) and 25% (RoBERTa) when we look at aver-
age performances. While RoOBERTa demonstrates to be the
best of the three models for cross-platform transfer, its per-
formance is still seriously impacted.

We observe that the proposed XP-CB framework boosts
this performance in all six cross-platform configurations,
demonstrating its ability to further the cross-platform trans-
ferability of both BERT and RoBERTa encoders. XP-CB
provides an absolute improvement of 9% when we use
BERT as the underlying encoder and an absolute improve-
ment of 7% when we use RoOBERTa. These improvements
are consistent across all six configurations, where the dif-
ferences between XP-CB-BERT and XP-CB-RoBERTa are
generally more marginal. We observe better overall perfor-
mance when crossing between Formspring and Wikipedia
in either direction, potentially due to the lengthier posts in
both cases. Performance is lower for configurations involv-
ing Twitter, where the length is much shorter.

To assess the effectiveness of XP-CB in inferring repre-
sentations that reconcile source and target platforms, we vi-
sualise the resulting embeddings for the six cross-platform
configurations by using tSNE (t-Distributed Stochastic
Neighbour Embedding) (Van der Maaten and Hinton
2008). Figure 2 displays the embeddings generated by the

BERT _base model.? In some of the configurations (FS —
TW, WP — TW and TW — WP), we can observe that the
data points of different clusters in the source and target plat-
forms are mixed together, which shows that a model trained
on the source platform labelled data using only BERT is not
enough for the target platform classification. Regarding the
other three cross-platform configurations (FS — WP, TW —
FS, WP — FS), the data points have begun to move closer
to their own clusters. Although the boundaries of each group
are not so clear, this shows that BERT has started to have
some platform awareness.

Figure 3 shows the XP-CB embeddings. We can observe
a clearer separation of classes with respect to the BERT
embeddings, which demonstrates the increased platform-
awareness of XP-CB. Especially on Wikipedia and Form-
spring, samples originating from different platforms are
spatially separated. Along with the improved performance
scores, visualisation of embeddings demonstrates the poten-
tial of XP-CB to bring the representations of source and tar-
get social media platforms closer to each other.

Conclusion

We have proposed XP-CB, a novel framework for cyber-
bullying detection in settings hitherto largely overlooked,
i.e. across different social media platforms through zero-
shot settings. Building on Transformer models BERT and
RoBERTa, our framework couples its fine-tuning capacity
with adversarial learning to enable cross-platform transfer.
Through experiments on six cross-platform configurations,
our study demonstrates the consistent effectiveness of XP-
CB to outperform competitive baselines, including the state-
of-the-art cross-platform cyberbullying detection model.

2We focus these visualisations on the BERT embeddings, rather
than the ROBERTa embeddings, due to the limited space.
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