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Abstract. Tools that are able to detect unverified information posted
on social media during a news event can help to avoid the spread of
rumours that turn out to be false. In this paper we compare a novel ap-
proach using Conditional Random Fields that learns from the sequential
dynamics of social media posts with the current state-of-the-art rumour
detection system, as well as other baselines. In contrast to existing work,
our classifier does not need to observe tweets querying the stance of a
post to deem it a rumour but, instead, exploits context learned dur-
ing the event. Our classifier has improved precision and recall over the
state-of-the-art classifier that relies on querying tweets, as well as out-
performing our best baseline. Moreover, the results provide evidence for
the generalisability of our classifier.
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1 Introduction

Social media platforms such as Twitter are increasingly being used by people
to follow newsworthy events [25] and by journalists for news gathering [37].
However, the speed at which news unfolds on social media means that much of
the information posted in the early stages of an event is unverified [22], which
makes it more difficult for the public to distinguish verified information from
rumours and covering the news becomes more challenging for journalists [29].

We set out to develop a rumour detection system that enables distinguishing
between verified and unverified posts. This can be useful to limit the diffusion of
information that might turn out subsequently to be false and so reduce the risk of
harm to individuals, communities and society [32]. Research in rumour detection
is scarce in the scientific literature, [35] being the only published work to date
that addresses this issue. They introduced an approach that looks for ’enquiring’
tweets, i.e., tweets that query or challenge the credibility of a previous posting
to determine whether it is rumourous; a tweet is deemed to be enquiring if it
matches one of a number of manually curated, regular expressions. While this is
an ingenious approach, it has some important limitations: it is reliant on there
being a human in the loop to regularly revise the list of regular expressions as
these may not generalise well to new datasets; it assumes that enquiring posts
will arise, though this may lead to low recall as not all rumourous posts will
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necessarily provoke queries; and it takes no account of the context surrounding
the post, which we believe can be exploited to gain insight into the way it
emerges. Other work has dealt with “rumour detection” with what we argue is
a questionable definition and which conflicts with definitions established in the
literature [1,8]. These studies understand rumours as false pieces of information,
and therefore misdefine the rumour detection task as consisting of distinguishing
true and false stories. In our study we adhere to the established definition that
understands a rumour as information circulating while its veracity is yet to be
confirmed [1,8]. Consequently, we define the goal of the rumour detection task
as that of identifying posts that are yet to be verified, distinguishing them from
non-rumours [40].

To the best of our knowledge, our work is the first to attempt rumour de-
tection without having to observe enquiring tweets. Instead, we introduce a
sequential approach based on Linear-Chain Conditional Random Fields (CRF)
to learn the dynamics of posts, which enables us to classify a post as a rumour or
non-rumour while relying on the content of a tweet, in conjunction with context
learnt from earlier posts associated with the same event, to determine if it is
rumourous. We investigate the performance of CRF as a sequential classifier on
five Twitter datasets associated with breaking news to detect tweets that con-
stitute rumours. The performance of CRF is compared with its non-sequential
equivalent, a Maximum Entropy classifier, as well as the state-of-the-art rumour
detection approach by [35] and other baseline classifiers. Our experiments show
substantial improvements and these improvements are consistent across the dif-
ferent events in our dataset.

2 Related Work

Despite increasing interest in rumours in social media [23,26,39,28,31,40], there
has been very little work in automatic rumour detection [36]. Much of what work
that has been done on rumour detection [24,10,11] has been limited to finding
rumours known a priori. A classifier is fed with a set of predefined rumours
(e.g., Obama is muslim), which then classifies new tweets containing a set of
relevant keywords (e.g., Obama and muslim) as being related to one of the
known rumours or not (e.g., I think Obama is not muslim would be about the
rumour, while Obama was talking to a group of Muslims would not). An approach
like this can be useful for long-standing rumours, where one wants to identify
relevant tweets to track the rumours that have already been identified; one may
also refer to this task as rumour tracking rather than rumour detection, given
that the rumour is known a priori. However, this would not work for contexts
such as breaking news, where previously unseen rumours emerge and a priori
the specific keywords linked to the rumour are not yet known. In such cases, a
classifier has to determine if each new update is yet to be verified and hence
constitutes a rumour. To deal with such situations, a classifier would need to
learn generalisable patterns that will help identify new rumours during breaking
stories.
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To the best of our knowledge, the only work to tackle the detection of new
rumours is that by [35]. Their approach builds on the assumption that rumours
will provoke tweets from skeptical users who question or enquire about their
veracity; the fact that a post has a number of enquiring tweets associated with
it would then imply it is rumourous. The authors created a manually curated
list of five regular expressions (e.g., “is (that | this | it) true”), which are used to
identify querying tweets. These enquiring tweets are then clustered by similarity,
each cluster being ultimately deemed a candidate rumour. Their best approach
achieved 52% and 28% precision for two datasets. While this work builds on
a sensible hypothesis and presents a clever approach to the rumour detection
task, there are three potential limitations: (1) being based on manually curated
regular expressions the approach may not generalise well; (2) the hypothesis
might not always apply and hence lead to low recall as, for example, certain
rumours reported by reputable media are not always questioned by the general
public [40]; (3) it takes no account of the context that precedes the rumour,
which can give additional insights into what is going on and how a post can
be rumourous in that context (e.g., the rumour that a gunman is on the loose,
when the police have not yet confirmed it, is easier to be deemed a rumour if
we put it into the context of preceding events, such as posts that the identity of
the gunman is unknown).

While not strictly doing rumour detection, other researchers have worked on
related tasks. For instance, there is an increasing body of work [24,15,10,11,17,34]
looking into stance classification of tweets discussing rumours, categorising tweets
as supporting, denying or questioning the rumour. The approach has been to
train a classifier from a labelled set of tweets to categorise the stance observed
in new tweets discussing rumours; however, these authors do not deal with non-
rumours, assuming instead that the input to the classifier is already cleaned up
to include only tweets related to rumours. There is also work on veracity classi-
fication both in the context of rumours and beyond [4,14,15,19,33,18,12]. Work
on stance and veracity classification can be seen as complementary to our objec-
tives; one could use the set of rumours detected by a rumour detection system
as input to a classifier that determines stance of tweets in those rumours and/or
veracity of those rumours [36].

3 Dataset

We collected a diverse set of stories that would not necessarily be known a
priori and which would include both rumours and non-rumours. We did this
by emulating the scenario in which a journalist is following reports associated
with breaking news. Seeing a timeline of tweets about the breaking news, a user
would then annotate each of the tweets as being a rumour or a non-rumour.

Tweets were collected from the Twitter streaming API relating to news-
worthy events that could potentially prompt the initiation and propagation of
rumours. As soon as our journalist collaborators informed us about a newswor-
thy event, we set up the data collection process, tracking the main hashtags and
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keywords pertaining to the event as a whole. Note that while launching the col-
lection slightly after the start of the event means that we may have missed the
very early tweets, we kept collecting subsequent retweets of those early tweets,
making it much more likely that we would retrieve the most retweeted tweets
from the very first minutes. Once we had the collection of tweets for a news-
worthy event, we sampled the timeline to enable manual annotation (signaled
by highly retweeted tweets associated with newsworthy current events). After-
wards, the journalists read through the timeline to mark each of the tweets as
being a rumour or not, making sure that the identification of rumours was in
line with the established criteria [39]. A tweet was annotated as a rumour when
there was no evidence or no authoritative source had confirmed it. Note that
the annotation of a tweet as a rumour does not imply that the underlying story
was later found to be true or false, but instead it reflects that the story was
unconfirmed at the time of posting.

We followed the process above for five different newsworthy events, all of
which attracted substantial interest in the media and were rife with rumours:

– Ferguson unrest: citizens of Ferguson in Missouri, USA, protested after the
fatal shooting of an 18-year-old African American, Michael Brown, by a
white police officer on August 9, 2014.

– Ottawa shooting: shootings occurred on Ottawas Parliament Hill, resulting
in the death of a Canadian soldier on October 22, 2014.

– Sydney siege: a gunman held hostage ten customers and eight employees of
a Lindt chocolate cafe located at Martin Place in Sydney on December 15,
2014.

– Charlie Hebdo shooting: two brothers forced their way into the offices of
the French satirical weekly newspaper Charlie Hebdo, killing 11 people and
wounding 11 more, on January 7, 2015.

– Germanwings plane crash: a passenger plane from Barcelona to Dsseldorf
crashed in the French Alps on March 24, 2015, killing all passengers and
crew. The plane was ultimately found to have been deliberately crashed by
the co-pilot.

Given the large volume of tweets in the datasets, we sampled them by picking
tweets that provoked a high number of retweets. The retweet threshold was set to
100, selected based on the size of the resulting dataset. For each of these tweets
in the sampled subset, we also collected all tweets that replied to them. While
Twitter does not provide an API endpoint to retrieve ’conversational threads’
[30] provoked by tweets, it is possible to collect them by scraping tweets through
the web client interface. We developed a script that enabled us to collect and
store complete threads for all the rumourous source tweets1. We used replying
tweets for two purposes: (1) for manual annotation work, where replies to each
tweet can provide useful context for the annotator to decide if a tweet is a rumour
where the tweet itself does not provide sufficient details; (2) we to reproduce one

1 Collection script available at https://github.com/azubiaga/pheme-twitter-
conversation-collection.
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of our baselines classifiers, i.e. the classifier introduced by [35]. However, our
approach ignores replying tweets, relying only on the source tweet itself.

The sampled subsets of tweets were visualised in a separate timeline per day
and sorted by time. Using these timelines, the journalists were asked to use their
knowledge of the events to identify rumours and non-rumours. Along with each
tweet, journalists could optionally click on the bubble next to the tweet to vi-
sualise replying tweets. The annotation work led to the manual categorisation
of each tweet as being a rumour or not. As the journalists progressed along the
timeline, new tweets reporting repeated stories were assigned the same annota-
tion as in the previous instance.

The final dataset comprised 5,802 annotated tweets, of which 1,972 were clas-
sified as rumours and 3,830 as non-rumours. These annotations are distributed
differently across the five events, as shown in Table 3. While slightly over 50% of
the tweets were rumours for the Germanwings Crash and the Ottawa Shooting,
less than 25% were so for Charlie Hebdo and Ferguson. The Sydney Siege had
an intermediate rumour ratio of (42.8%).

Event Rumours Non-rumours Total

Charlie Hebdo 458 (22.0%) 1,621 (78.0%) 2,079
Ferguson 284 (24.8%) 859 (75.2%) 1,143
Germanwings Crash 238 (50.7%) 231 (49.3%) 469
Ottawa Shooting 470 (52.8%) 420 (47.2%) 890
Sydney Siege 522 (42.8%) 699 (57.2%) 1,221

Total 1,972 (34.0%) 3,830 (66.0%) 5,802

Table 1. Distribution of annotations of rumours and non-rumours for the five events.

4 The Rumour Detection Task

We define the rumour detection task as that in which, given a timeline of tweets,
the system has to determine which tweets are reporting rumours and hence
spreading information that is yet to be verified. Note that the fact that a tweet
constitutes a rumour does not imply that it will later be deemed true or false,
but that it is unverified at the time of posting. The identification of rumours
within a timeline is ultimately meant to warn users that the information has not
been confirmed and, while it may later be confirmed, it may also turn out to be
false.

Formally, the task takes an evolving timeline of tweets TL = {t1, ..., t|TL|}
as input, and the classifier has to determine whether each of these tweets, ti,
is a rumour or a non-rumour by assigning a label from Y = {R,NR}. Hence,
we formulate the task as a binary classification problem, whose performance
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is evaluated by computing the precision, recall and F1 scores for the target
category, i.e., rumours.

5 Exploiting Context for Rumour Detection

5.1 Hypothesis

In our dataset there were examples where the tweet alone provided sufficient
evidence for classifying it as a rumour. For example, in ‘the name of the police
officer who fatally shot the kid would be reportedly announced by the police later
in the day” the use of “reportedly” expresses uncertainty and so we may conclude
that the post is not confirmed. In contrast, posts such as “the kid was involved
in a robbery before being shot” may not be as easily classified from the tweet
alone. Hence, this argues for the need to leverage additional information in the
form of context that may help the classifier distinguish between rumours and
non-rumours.

One source of tweet context is how others react to it [35]. For example, the
tweet “the kid was involved in a robbery before being shot” provoked the response
“is that true?”. However, close examination of rumours in our dataset revealed
that this cannot be relied upon. For example, “the kid was shot 10 times by the
police” provoked no querying response, though it was subsequently revealed to
be untrue. Hence, while reactions may be indicative of a posting being unveri-
fied, we conclude that relying on this will lead to a classifier with low recall and
that the classifier needs to be aware of how the event is unfolding, drawing on
the posts that constitute it before the current post. The tweet to be classified
as rumour or non-rumour should therefore leverage earlier posts, both rumours
and non-rumours, that make up a ’thread’ in which th e current tweet fits. For
example, a tweet reporting the rumour that “the police officer who shot the kid
has left the town” may be easier to classify given previous reports related to
the police officer and the killing. Based on this, we hypothesise that aggregat-
ing rumourous and non-rumourous posts preceding the tweet being classified will
improve performance of the rumour detection system. We operationalise this by
using a sequential classifier that learns from the dynamics of reports observed
preceding the current tweet.

5.2 Classifiers

In order to test our hypothesis, we used Conditional Random Fields (CRF) as a
sequential classifier that enables aggregation of tweets as a thread of individual
posts. We used a Maximum Entropy classifier as the non-sequential equivalent
of CRF to test the validity of the hypothesis and also use additional baseline
classifiers for further comparison. Moreover, we also reproduced a baseline [35] to
compare the performance of our approach with that of a state-of-the-art method.

Conditional Random Fields (CRF). We modeled the twitter thread as
a linear chain or graph as a sequence of rumours and non-rumours. In contrast
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to classifiers that choose a label for each input unit (e.g., a tweet), CRF also
considers the neighbours of each unit, learning the probabilities of transitions
of label pairs. The input for CRF is a graph G = (V,E), where in our case
each of the vertices V is a tweet and the edges E are relations of tweets, i.e.,
a link between a tweet and its preceding tweet in the event. Hence, having a
data sequence X as input, CRF outputs a sequence of labels Y [13], where
the output of each element yi will not only depend on its features, but also on
the probabilities of other labels surrounding it. The generalisable conditional
distribution of CRF is shown in Equation 1 [27]2.

p(y|x) =
1

Z(x)

A∏
a=1

Ψa(ya, xa) (1)

where Z(x) is the normalisation constant and Ψa is the set of factors in the
graph G.

Hence, for rumour detection, CRF exploits the sequence of rumours and non-
rumours leading up to the current tweet to determine whether it is a rumour. It
is important to note that with CRF the sequence of rumours and non-rumours
preceding the tweet being classified will be based on the predictions of the clas-
sifier itself and will not use any ground truth annotations. Errors in early tweets
in the sequence may then increase errors in subsequent tweets.

Maximum Entropy classifier (MaxEnt). As the non-sequential equiv-
alent of CRF, we used a Maximum Entropy (or logistic regression) classifier,
which operates at the tweet level. This enabled us to compare directly the ex-
tent to which treating the tweets posted during an event as a sequence can boost
the performance of the classifier.

Enquiry-based approach [35]: We reproduced this approach, classifying
a tweet as a rumour if at least one of the replying tweets matched one of the
following regular expressions: (1) is (that | this | it) true, (2) wh[a]*t[?!][?1]*, (3)
( real? | really ? | unconfirmed ), (4) (rumor | debunk), (5) (that | this | it) is
not true.

Additional baselines. We also compared three more non-sequential classi-
fiers3: Naive Bayes (NB), Support Vector Machines (SVM) and Random Forests
(RF).

We performed the experiments in a 5-fold cross-validation setting, having in
each case four of the events for training and the remainder event for testing. This
enabled us to simulate a realistic scenario where an event is completely unknown
to the classifier and it has to identify rumours from the knowledge garnered from
events in the training set. For evaluation purposes, we aggregated the output of
all five runs as the micro-averaged evaluation across runs.

2 We use the PyStruct package to implement CRF [21].
3 We used the scikit-learn Python package for these baselines.
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5.3 Features

We used two types of features: content-based features and social features, testing
them individually as well as combined. These two types of features are intended
to capture the role that both textual content and user behaviour play in the
detection of rumours. Features are limited to those that can be obtained in
a real-time scenario, hence we do not consider some features like number of
retweets or number of favourites, which are zero at the very beginning and takes
time for them to increase as people react.

Content-based Features We use seven different features extracted from the
content of the tweets:

– Word Vectors: to create vectors representing the words in each tweet,
we built word vector representations using Word2Vec [20]. We trained five
different Word2Vec model with 300 dimensions, one for each of the five folds,
training the model in each case from the collection of tweets pertaining to
the four events in the training set, so that the event (and the vocabulary) in
the test set was unknown.

– Part-of-speech Tags: we built a vector of part-of-speech (POS) tags with
each feature in the vector representing the number of occurrences of a certain
POS tag in the tweet. We used Twitie [3] to parse the tweets for POS tags,
an information extraction package that is part of GATE [5].

– Capital Ratio: the ratio of capital letters among all alphabetic characters
in the tweet. Use of capitalisation tends to reflect emphasis, among other
attributes.

– Word Count: the number of words in the tweet, counted as the number of
space-separated tokens.

– Use of Question Mark: a binary feature representing if the tweet had a
question mark in it. Question marks may be indicative of uncertainty.

– Use of Exclamation Mark: a binary feature representing if the tweet had
an exclamation mark in it. Exclamation marks may be indicative of emphasis
or surprise.

– Use of Period: a binary feature representing if the tweet contained a period.
Punctuation may be indicative of good writing and hence careful reporting.

Social Features We used five social features, all of which can be inferred from
the metadata associated with the author of the tweet and which is embedded as
part of a tweet object retrieved from the Twitter API. We defined a set of social
features that are indicative of a user’s experience and reputation:

– Tweet Count: we inferred this feature from the number of tweets a user
had posted on Twitter. As numbers can vary substantially across users, we
normalised them by rounding up the 10-base logarithm of the tweet count:
dlog10(statusescount)e.
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– Listed Count: this feature was computed by normalising the number of
lists a user belongs to, i.e., the number of times other users decided to add
them to a list: dlog10(listedcount)e.

– Follow Ratio: we looked at the reputation of a user as reflected by their
number of followers. However, the number of followers might occasionally be
rigged, e.g., by users who simply follow many others to attract more followers.
To control for this, we defined the follow ratio as the logarithmically scaled
ratio of followers over followees: blog10 (#followers/#following)e.

– Age: we computed the age of a user as the rounded number of years that
the user has spent on Twitter, i.e., from the day the account was set up to
the day of the current tweet.

– Verified: a binary feature representing if the user had been verified by Twit-
ter or not, i.e., those whose identity Twitter has validated, and tend to be
reputable people.

6 Results

6.1 Comparison of Classifiers

Table 2 shows the results for different classifiers using either or both content-
based and social features, as well as the results for the state-of-the-art classifier
[35]. Performance using content-based features suggests a remarkable improve-
ment for CRF over the other classifiers. This is especially true when we look
at precision, where CRF performs substantially better than the rest. Only the
Naive Bayes classifier performs better in terms of recall, however, it performs
poorly in terms of precision. CRF clearly balances precision and recall better,
outperforming all the other classifiers in terms of the F1 score.

The results are not as clear when we look at social features. CRF still per-
forms best in terms of precision, but recall performance drops, where most of
the classifiers perform better than CRF, with SVM being the best. The F1 score
shows that SVM best exploits social features, however, performance results using
social features are significantly worse than those using content-based features,
suggesting social features alone are not sufficient.

When both content-based features and social features are combined, we see
that the results resemble that of the use of content-based features alone. CRF
outperforms all the rest in terms of precision, while Naive Bayes is good only
in terms of recall. The aggregation of features also leads to CRF being the best
classifier in terms of F1 score, with CRF giving an improvement of 39.9% over
Naive Bayes, the second best classifier. If we compare the results of CRF with
the use of content-based features alone or combining both types of features, we
notice that all F1 scores for combined features are superior to their counterparts
using content-based features alone, among which CRF performs best.

Comparison with respect to the baseline approach [35] supports our conjec-
ture that a manually curated list of regular expressions may lead to low recall.
This approach gets a relatively good precision score but it performs substantially
worse than CRF. Expanding and/or adapting the list of regular expressions to
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Content Social Cont + Social

Classifier P R F1 P R F1 P R F1

SVM 0.355 0.445 0.395 0.337 0.524 0.410 0.337 0.483 0.397
Random Forest 0.271 0.087 0.131 0.343 0.433 0.382 0.275 0.099 0.145
Naive Bayes 0.309 0.723 0.433 0.294 0.010 0.020 0.310 0.723 0.434
MaxEnt 0.329 0.425 0.371 0.336 0.476 0.394 0.338 0.442 0.383
CRF 0.683 0.545 0.606 0.462 0.268 0.339 0.667 0.556 0.607

State-of-the-art Baseline

Classifier P R F1

Zhao et al. [35] 0.410 0.065 0.113

Table 2. Classifier performance.

our specific set of events might improve performance but requires significant
manual effort and may still not guarantee better performance in the general
case.

6.2 Evaluation by Event

We now examine classifier performance broken down by event so that we can
analyse the extent to which the CRF classifier performs well across datasets (see
Table 3). The results are mostly consistent across events and in line with the
overall performance scores. The Naive Bayes classifier performs best in terms of
recall in most cases, however, this is due to it being skewed towards determining
that tweets are rumours, as seen in the low precision scores. The CRF classifier
achieves the highest precision scores consistently for all the datasets. Moreover,
it also achieves the best balance of precision and recall. These results reaffirm the
CRF classifier’s superiority with respect to the range of classifiers under study,
confirming also that exploiting context learned during the event as a sequential
set of postings leads to substantially improved performance.

These results also show that while the baseline classifier [35] is among the
best in terms of precision, and is often only outperformed by the CRF classifier,
it nevertheless performs poorly in terms of recall.

7 Discussion

The aim of a social media rumour detection system is to identify posts whose
content have yet to be verified. One application would be alerting users that a
report is yet to be verified and so should be treated with caution. Another would



11

Germanwings Charlie Hebdo Ottawa Shooting

Classifier P R F1 P R F1 P R F1

SVM 0.463 0.504 0.483 0.239 0.546 0.332 0.496 0.428 0.459
Random Forest 0.438 0.029 0.055 0.215 0.203 0.209 0.556 0.053 0.097
Naive Bayes 0.506 0.882 0.643 0.223 0.961 0.361 0.436 0.087 0.145
MaxEnt 0.475 0.441 0.458 0.239 0.535 0.330 0.512 0.409 0.454
Zhao et al. [35] 0.636 0.059 0.108 0.268 0.057 0.094 0.651 0.060 0.109
CRF 0.743 0.668 0.704 0.545 0.762 0.636 0.841 0.585 0.690

Sydney Siege Ferguson

Classifier P R F1 P R F1

SVM 0.435 0.485 0.458 0.240 0.451 0.313
Random Forest 0.466 0.065 0.114 0.254 0.127 0.169
Naive Bayes 0.426 0.962 0.590 0.248 0.820 0.381
MaxEnt 0.425 0.429 0.427 0.245 0.370 0.295
Zhao et al. [35] 0.429 0.075 0.127 0.355 0.077 0.127
CRF 0.764 0.385 0.512 0.566 0.394 0.465

Table 3. Classifier performance broken down by event.

be as input to classifiers that determine stance of tweets towards rumours [16,38]
or classifiers that determine the veracity of rumours [9]. A rumour detection
system can in fact be the first component of a system that deals with rumours
[36]: (1) rumour detection; (2) rumour tracking; (3) rumour stance classification,
and (4) rumour veracity classification.

Our rumour detection experiments on five datasets, each associated with a
breaking news story, show that a classifier that sequentially exploits context from
earlier tweets achieves significant improvements over non-sequential classifiers.
Our CRF classifier substantially outperforms its non-sequential counterpart, a
Maximum Entropy classifier, as well as other non-sequential classifiers. More-
over, our approach is better than the state-of-the-art baseline [35] that uses
regular expressions to classify as rumours. The latter fails to achieve a compet-
itive recall score, which we believe is for two main reasons: (1) rumours will not
always provoke enquiring reactions; and (2) regular expressions may have limited
generalisability and require regular manual updates. In contrast, our automated
sequential classifiers can classify a tweet as a rumour or non-rumour from its
own content and context from earlier tweets, without having to wait for any
reactions.

While we are confident that our approach covers a diverse range of rumours
and non-rumours, one caveat is that our experiments have been limited to tweets
retweeted at least 100 times. While this is consistent with one of the key char-
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acteristics of rumours, i.e., that they have to attract a substantial interest to be
deemed rumours, it is necessary to wait until a tweet gets retweeted a number of
times before it can be considered a candidate for input to the classifier. The de-
velopment of a classifier that identifies these highly retweeted tweets promptly
would enable earlier detection of rumours. Likewise, experimentation with a
dataset that includes tweets annotated as rumour or non-rumour which has not
been filtered by retweet count would be useful to extend our work and validate
with an entire timeline of tweets. The latter has not been possible in our case
owing to the cost associated with such large-scale annotation of tweets.

8 Conclusion

We have introduced a novel approach to rumour detection in social media by
leveraging the context preceding a tweet with a sequential classifier. Experiment-
ing over five news datasets collected from Twitter and annotated for rumours
and non-rumours by journalists, we have shown that this can substantially boost
rumour detection performance. Our approach has also proven to outperform the
state-of-the-art rumour detection system [35] that relies on finding querying
posts that match a set of manually curated list of regular expressions. Their
approach performs well in terms of precision but fails in terms of recall, suggest-
ing that regular manual input is needed to revise the regular expressions. Our
fully automated approach instead achieves superior performance that is better
balanced for both precision and recall.

Social media and user-generated content (UGC) are increasingly important
in a number of different ways for the work of not only journalists but also gov-
ernment agencies such as the police and civil protection agencies [22]. However,
their use presents major challenges, not least because information posted on so-
cial media is not always reliable and its veracity needs to be checked before it
can be considered as fit for use in the reporting of news, or decision-making in
the case of responses to civil emergencies [22] or natural disasters [2]. Hence, it
is vital that tools be developed that can aid: a) the detection of rumours; b)
determination of their likely veracity. In the Pheme project [7], we have been
developing tools that address the need for the latter [40,16,6]. However, for tools
for rumour veracity determination to be effective, they need to be applied in
combination with the former and progress so far has been limited. In this paper,
we present a novel approach whose performance suggests it has the potential to
address this problem.

Finally, we have made the annotated datasets publicly available to promote
further research.4

4 https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/

4010619

https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
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