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 A B S T R A C T

Natural Language Generation has been rapidly developing with the advent of large language models (LLMs). 
While their usage has sparked significant attention from the general public, it is important for readers to 
be aware when a piece of text is LLM-generated. This has brought about the need for building models that 
enable automated LLM-generated text detection, with the aim of mitigating potential negative outcomes of 
such content. Existing LLM-generated detectors show competitive performances in telling apart LLM-generated 
and human-written text, but this performance is likely to deteriorate when paraphrased texts are considered. In 
this study, we devise a new data collection strategy to collect Human & LLM Paraphrase Collection (HLPC), a 
first-of-its-kind dataset that incorporates human-written texts and paraphrases, as well as LLM-generated texts 
and paraphrases. With the aim of understanding the effects of human-written paraphrases on the performance 
of SOTA LLM-generated text detectors OpenAI RoBERTa and watermark detectors, we perform classification 
experiments that incorporate human-written paraphrases, watermarked and non-watermarked LLM-generated 
documents from GPT and OPT, and LLM-generated paraphrases from DIPPER and BART. The results show that 
the inclusion of human-written paraphrases has a significant impact of LLM-generated detector performance, 
promoting TPR@1%FPR with a possible trade-off of AUROC and accuracy.
. Introduction

Large language models (LLMs) have become essential in Natu-
al Language Processing (NLP) thanks to their advanced capabilities 
or text processing and generation, which is achieved through analy-
is of patterns and relationships between words and sentences using 
ransformer models (Zubiaga, 2024). Consequently, LLMs have had a 
ignificant impact on Natural Language Generation (NLG), as they have 
rovided improved capacity for automatically generating high quality 
ext (Barreto et al., 2023).
While the advancement of LLMs in the context of NLG has aided 

asks such as machine translation (Zhang et al., 2023) and text summa-
ization (Zhang et al., 2024), it has also given rise to undesired social 
roblems, including intentional malicious usage, ethical concerns and 
nformation inaccuracy. This has brought about the need for research-
ng the development of methods for automated LLM-generated text de-
ection which distinguishes if a text is human- or LLM-generated (Fröh-
ing and Zubiaga, 2021). Currently, there are 2 major streams of 
LM-generated text detectors: (i) zero-shot classifiers (Mitchell et al., 
023; Solaiman et al., 2019), which identify LLM-generated text based 
n the pattern and characteristics of the input, and (ii) watermark 
etectors (Kirchenbauer et al., 2023), which rely on detecting the 
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presence of watermarks which are imprinted into the text during the 
generation process (Kirchenbauer et al., 2023), and are effective in 
the cases where the watermarks have been added by the LLM. The 
detectors then examine the input, classifying it as LLM-generated if the 
level of watermarking exceeds a set threshold, or as human-generated 
otherwise.

Both kinds of detectors have demonstrated excellent performance 
in LLM-generated text detection. However, research testing these de-
tectors has primarily focused on datasets involving texts which are 
exclusively generated by humans or by LLMs. There can be, however, 
more complicated cases, such as paraphrased texts, which have been 
seldom considered in previous research. This is important as many 
LLMs incorporate watermarks in the generated outputs. Watermarking 
of LLM-generated texts is done by promoting words from the LLM’s 
‘‘green list’’ and denoting words from the LLM’s ‘‘red list’’. Hence, 
a text which contains more words from the ‘‘green list’’ and fewer 
words from the ‘‘red list’’ is much more likely to be LLM-generated 
and hence facilitates detection. Paraphrasing is defined as the rewrit-
ing of context in a simpler and shorter form Cambridge Dictionary 
(2019); an LLM-generated text paraphrased by humans can then lead 
to the replacement of those ‘‘green-list’’ words by other words, hence 
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Fig. 1. Flowchart of the LLM text generation, paraphrasing and classification process.
Fig. 2. Mean similarity scores of watermarked (left) and non-watermarked (right) LLM-generated texts and their paraphrases across different datasets.
 

changing its statistical properties and reducing its detectability. Since 
the above detectors perform classification based on token patterns 
and watermarks, paraphrasing could effectively evade both zero-shot 
classifiers and watermark detectors while preserving semantic informa-
tion from the original LLM-generated text. It is important to identify 
that a text originated from an LLM, despite having been subsequently 
paraphrased, as this can still be leveraged for massive generation of 
texts for malicious purposes.

In this work, we are the first to comprehensively study the effec-
tiveness of LLM-generated text detectors in the presence of human-
paraphrased texts, in turn assessing the impact of these edited texts 
on the model performance. In this study, we aim to address this prob-
lem by using human-written paraphrases for classification, with the 
notion that human-written paraphrases and LLM-generated paraphrases 
might contain different characteristics, which potentially improve the 
classifiers’ performances. We set forth the following research question: 
‘‘What are the effects of including human-written paraphrases in LLM-
generated text detection?’’ With this aim and research question in mind, 
we make the following contributions:

• We perform a review of the literature to investigate the exist-
ing NLG developments, the importance of LLM-generated text 
detection, and the performances of existing detectors.

• We describe a data collection process which enables us to build 
and release the Human & LLM Paraphrase Collection (HLPC) 
dataset with human-generated and LLM-generated documents, 
along with their paraphrases.

• We perform classification experiments using SOTA AI paraphrasers
and detectors, along with human-written paraphrases.

• Our study contributes to the domain of LLM-generated text detec-
tion by examining the effects of including human-written para-
phrases in classification and providing insights on data inclusion 
in future detector building.
2

2. Related work

We review existing research in NLG with a focus on LLMs, the 
importance of LLM-generated text detection and existing detection 
models, following with a discussion of the main research gaps that our 
study addresses.

2.1. Natural Language Generation (NLG)

NLG represents a substantial branch of research within NLP, where 
existing NLG tasks include question-answering (Allam and Haggag, 
2012), text summarization (El-Kassas et al., 2021), and machine trans-
lation (Lopez, 2008).
LLMs in NLG. Very recently, the development of LLMs has brought 
significant improvements to NLG, primarily due to their ability of 
learning linguistic patterns from very large-scale corpora. Before the 
adoption of LLMs, two techniques were used for NLG. The earliest 
NLG systems used templates and rules (Mou, 2022) and the later 
systems utilized conditional probability between words to account for 
context dependency (Goyal et al., 2023). Fundamentally, these systems 
lack flexibility and adaptability since text generation is restricted, 
resulting in unfavorable generation patterns, such as inaccuracy in 
question answering in the rule-based model and word repetitions in the 
probabilistic model.

Recent research proposed different LLMs that adopt deep learning 
and neural networks in NLP, contributing to a remarkable improvement 
in NLG (Goyal et al., 2023). With the use of a transformer architecture, 
the models can capture long-range text dependencies with positional 
encoding, allowing the models to understand both in-words and in-
sentence relationships. The models can also be fine-tuned to cater to 
specific NLG needs. Coupled with large-scale datasets and parameters, 
LLMs can understand complex linguistic patterns and relationships. For 
example, GPT-3 is trained with 499 billion tokens and 175 billion 
parameters (Brown et al., 2020; Zhang et al., 2022). This promotes 
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Fig. 3. ROC Curve Comparison: (a) Human-generated Documents vs Non-watermarked LLM-generated Documents, (b) Human-generated Paraphrases vs Non-watermarked LLM-
generated Documents, (c) Human-generated Documents vs Watermarked LLM-generated Documents, (d) Human-generated Paraphrases vs Watermark LLM-generated Documents.
models’ learning of language representations, including syntactic, con-
textual and semantic information (Goyal et al., 2023). Text data from 
large corpora are used to train LLMs, such as CommonCrawl, Web-
Text2, BookCorpus, etc (Brown et al., 2020; Zhang et al., 2022), which 
allow the models to learn knowledge from a broad range of disciplines. 
With the above advancements, LLMs can thus generate human-like 
outputs solely using user prompts as inputs (Krishna et al., 2024). As a 
result, the use of LLMs along with a simple chat interface has attracted 
massive usage and attention from the general public (Touvron et al., 
2023), with over 180 million users for OpenAI ChatGPT (Shewale, 
2023).

While LLMs provide a new direction for text generation in NLG, they 
are also being widely used to support evaluation of NLG outputs (Li 
et al., 2024), which is however beyond the scope of this study.
Paraphrase generation. One of the NLG tasks for which LLMs have 
brought a significant boost is paraphrase generation, with various AI 
paraphrasers built on top of existing LLMs. Paraphrasing is defined 
as the rewriting of context in a simpler and shorter form (Cambridge 
Dictionary, 2019), and is used extensively to avoid content to be 
flagged as plagiarism. A paraphrase generator takes sentences or para-
graphs as inputs, and creates rewritten outputs which preserve the 
semantics of the original text (Goyal et al., 2023). Currently, there are 
2 types of AI paraphrasers: (i) systems that are inherently built for 
paraphrasing, specifically built to paraphrase text automatically and 
3

evade LLM-generated text detectors; an example of this is DIPPER (Kr-
ishna et al., 2024), which could paraphrase long paragraphs and con-
trol output diversity, and (ii) AI chatbots that receive paraphrasing 
prompts to produces paraphrases; an example of this is T5-paraphraser 
Parrot (Damodaran, 2021).

To account for the quality of paraphrases, grammar accuracy and 
content semantic preservation are considered either with human ex-
perts or automatic model evaluation. In Sadasivan et al. (2023), hu-
man evaluation was conducted for the paraphrases generated from 
DIPPER and Llama-2-7B-Chat. Paraphrases from both models exhibit 
high ratings in terms of content preservation and grammar accuracy. 
To account for semantic similarity, Krishna et al. (2024) use the P-
SP model to compute semantic similarity scores which reflects the 
level of contextual relationship between the paraphrases and original 
text. Jayawardena et al. (2024) use a variety of semantic similarity 
scores by calculating co-sine distances of the outputs from different 
embedding models, such as ‘‘Ada Score’’ with embeddings generated 
from OpenAI’s text-embedding-ada-002 (OpenAI, 2023) and ‘‘SimCSE 
Score’’ with embeddings generated from SimCSE’s sup-simcse-roberta-
large model (Gao et al., 2021). DIPPER effectively paraphrases text 
with high semantic similarity. This shows that existing AI paraphrasers, 
coupled with the use of LLM, have shown great advancement in aiding 
automatic paraphrase generation.
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2.2. Importance of LLM-generated text detection

Despite the convenience brought by LLMs for improved NLG, they 
can also cause various problems with a negative impact on society, 
which has motivated the need for investigating methods for LLM-
generated text detection. Next, we discuss three key problems arising 
from the use of LLMs, especially when the generated texts is not flagged 
or labeled as being LLM-generated: intentional malicious usage, ethical 
concerns and information inaccuracy (Zhao et al., 2024).
Intentional malicious usage. Malicious actors may exploit LLMs to pro-
duce fake content or to produce content in circumstances where LLM-
generated content is unacceptable. Examples include the creation of 
fake news in political elections to denigrate competitors (Illia et al., 
2023) and the creation of writing or code to then claim full credit 
for it in an academic environment (Kirchenbauer et al., 2023). As 
proposed in Solaiman et al. (2019), malicious actors can be categorized 
into 3 levels: low-skilled, moderate-skilled and advanced-skilled based 
on their programming level and available resources. Moderate-skilled 
actors could already produce fake news or build spambots for social 
media, let alone the adverse effects that advanced-skilled actors could 
bring.

Ethical concerns. Ethical considerations concerning gender, race and 
ethnicity bias are raised attributing to the inherent sampling bias of 
the LLM, which potentially leads to social inequality and discrimina-
tion (An et al., 2024). As presented in Section 2.1, LLMs are trained 
from very large corpora. However, the sampling of content from these 
corpora might itself be biased. For example, a study found that Red-
dit data used to train GPT-2 (Radford et al., 2023) is composed of 
context generated mainly by young males in the United States (Pew 
Research Center’s Journalism Project, 2016). Since the training of 
models gives equal weighting for each document in the sample (Illia 
et al., 2023), the resulting model thus shows an under-representation 
of female groups and groups in other age ranges. These biases can be 
further extended to race, ethnicity and disability (Hutchinson et al., 
2020; Bender et al., 2021). As a result, LLMs might generate biased 
content that instills negative stereotypes and sentiments toward certain 
demographics (Hutchinson et al., 2020), leading to exacerbated social 
inequality and discrimination.
Information inaccuracy. Information accuracy is not guaranteed by 
LLMs, which can end up misleading users who are inexperienced or 
who otherwise overly trust LLM outputs. LLMs can in fact be negatively 
impacted by inaccurate information that is inherent in the large corpora 
used for training them. For example, Reddit as a source of GPT-
2 (Radford et al., 2023) has a risk of containing information that is 
not verified, leading to potential information inaccuracy and credibility 
issues. As a result, LLM-generated text might be inaccurate, even if 
the information is factual (Mitchell et al., 2023; Illia et al., 2023; 
Lin et al., 2022). With LLM-generated content being perceived as a 
credible source by many users (Kreps et al., 2022), it might mislead 
non-professional users with its outputs of varying levels of quality. 
Meanwhile, if the problem persists, it will lead to a degradation in 
LLM-generated text accuracy or cause complications in future training 
of LLMs.

With the massive creation of LLM-generated content on the web, 
there is a risk that future training of LLMs could include LLM-generated 
content without necessarily knowing, which can then amplify accuracy 
issues on the LLMs. Research has suggested that LLM-generated con-
tent should be excluded from training to avoid this problem (Radford 
et al., 2023) indicating that unnecessary overhead is caused due to 
the inaccuracy of LLMs. To conclude, considering the increasing usage 
and potential problems of automatic text generation, it is important to 
identify LLM-generated text to safeguard the quality of output and to 
mitigate the aforementioned problems with human oversight.
4

2.3. SOTA LLM-generated text detection

Approaches to LLM-generated text detection. Currently, there are two 
major streams of LLM-generated text detectors: (i) zero-shot classi-
fiers (Solaiman et al., 2019; Mitchell et al., 2023), and (ii) watermark 
detectors (Kirchenbauer et al., 2023). Zero-shot classifiers aim to iden-
tify patterns and statistical characteristics of input text, comparing 
them to those of LLM-generated text (Sadasivan et al., 2023; Wolff and 
Wolff, 2020). For example, DetectGPT calculates the average log prob-
ability ratio of the input text over its perturbations and classifies text as 
LLM-generated if the ratio exceeds a threshold (Mitchell et al., 2023). 
Zero-shot classifiers do not require further training, thus facilitating 
usage from non-technical users. Watermark detectors rely on the addi-
tion of a watermark, which is not visible to humans, on LLM-generated 
text. Kirchenbauer et al. (2023) proposed a watermarking scheme with 
tokens in ‘‘green list’’ and ‘‘red list’’. While adding the watermark on 
LLM-generated text, the use of ‘‘green list’’ tokens are prioritized in 
the sentence generation process, resulting in a text dominated by these 
tokens. The detector thus classifies a text to be LLM-generated if the 
number of ‘‘green list’’ tokens is high. Strong and weak watermark-
ing can be implemented by adjusting the parameters (Kirchenbauer 
et al., 2023). These two types of detectors both exhibit remarkable 
performance in LLM-generated text detection.

For zero-shot classifiers, 95% accuracy is observed from RoBERTa 
fine-tuned classifiers (Solaiman et al., 2019) and 92% from GROVER
(Zellers et al., 2019). Apart from accuracy, AUROC is also considered 
to account for the true positive rate (TPR) and false positive rate (FPR), 
as false positive is highly discouraged for these classifiers to misclassify 
human-written text as LLM-generated (Kirchenbauer et al., 2023). De-
tectGPT shows SOTA performance with an average AUROC of 95.3% 
on various datasets. It should also be noted that detection performance 
varied with text length and decoding strategies (Solaiman et al., 2019; 
Mitchell et al., 2023). Meanwhile, watermark detectors also show out-
standing performance, with strong watermarking detection achieving 
100% AUROC and soft watermarking achieving 98.9% (Kirchenbauer 
et al., 2023). Watermark detectors are also regarded as more effec-
tive detectors than zero-shot classifiers (Krishna et al., 2024). Other 
than the above two mainstream LLM-generated text detectors, Krishna 
et al. (2024) proposed an information retrieval-based detector, which 
classifies text by comparing the input text with stored LLM outputs.
Paraphrase attacks in LLM-generated text detection. While existing LLM-
generated text detectors show remarkable performance, they can be 
vulnerable to paraphrasing attacks, as one can alter generated texts 
to circumvent detection. Since these detectors perform classification 
based on the existence of token patterns or watermarks, paraphras-
ing on LLM-generated text, either by human or AI paraphrasers, can 
potentially evade the detectors (Kirchenbauer et al., 2023; Sadasivan 
et al., 2023; Wolff and Wolff, 2020). Past research has conducted 
experiments on different types of paraphrasing attacks. Kirchenbauer 
et al. (2023) performed the attack by replacing words with tokens 
generated from T5 model and noticed a significant watermark degra-
dation with AUROC decreasing from 99.8% to 69.6%. Krishna et al. 
(2024) showed that after using DIPPER AI-paraphraser, DetectGPT’s 
detection rate significantly reduced from 70.3% to 4.6% and watermark 
detection accuracy decreased from 100% to 57.2%. The aforemen-
tioned research performs only a single round of paraphrasing, and it 
is sufficient to substantially reduce the detectors’ performance. Notic-
ing this, Sadasivan et al. (2023) performed recursive paraphrasing 
attacks on various LLM-generated text detectors, where LLM-generated 
text is paraphrased with AI paraphrasers in multiple iterations. They 
concluded that recursive attacks could further evade these detectors. 
For non-watermarked text, DetectGPT’s AUROC score decreases from 
96.5% to 59.8% with text paraphrased with T5 model. The same 
outcome also resulted in watermarked text. With 2 rounds of para-
phrasing with DIPPER and Llama-2-7B-Chat (Sadasivan et al., 2023), 
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Fig. 4. ROC Curve Comparison: (a) Human-generated Documents/Paraphrases vs DIPPER-generated Paraphrases from Non-watermarked MRPC GPT2-generated Text, (b) 
Human-generated Documents/Paraphrases vs BART-generated Paraphrases from Non-watermarked MRPC GPT2-generated Text, (c) Human-generated Documents/Paraphrases vs 
DIPPER-generated Paraphrases from Watermarked MRPC GPT2-generated Text, (d) Human-generated Documents/Paraphrases vs BART-generated Paraphrases from Watermarked 
MRPC GPT2-generated Text.
TPR@1%FPR drops significantly from 99.8% to 44.8% and 38.9% 
respectively. The score further decreased to 15.7% and 27.2% respec-
tively after 5 rounds of paraphrasing, reflecting the detectors’ inability 
to identify LLM-generated paraphrases. Other than the degradation 
in TPR@1%FPR, AUROC scores also decreased from 99.9% to 76.3% 
and 79.5% respectively. As such, from existing research it can be 
expected that paraphrasing attacks, which change the statistical prop-
erties and replace watermarked tokens, could effectively evade both 
zero-shot classifiers and watermark detectors while preserving semantic 
information from the original LLM-generated text (Krishna et al., 2024).

2.4. Research gap

In existing research, classifications are conducted with datasets 
consisting of human-written text and paraphrases of LLM-generated 
text. While LLM-generated text detectors make classification based on 
the existence of LLM-generated features in the input (Sadasivan et al., 
2023; Wolff and Wolff, 2020), a potential reason for paraphrasing 
attack successfully evading these detectors might be the fundamental 
difference in the language format between LLM-generated text and its 
paraphrases. Razaq et al. (2024) stated that paraphrases, which contain 
similar semantic information, could exhibit different lexical, syntactic 
and word order from the original text. As such, the LLM-generated 
paraphrases might not contain the characteristics that these detectors 
are looking for, leading to misclassification.

Hence, to addressing the existing gap, our aim in this research 
is to include human-paraphrased text in the dataset for classifica-
tion, which we experiment with SOTA LLM-generated text detectors. 
5

LLM-paraphrased text might potentially distinguish itself from human-
paraphrased text, in terms of the degree of semantic understanding, 
writing style and word choices. As a result, an investigation into the 
effect of including human paraphrases on LLM-generated text detection 
can help identify potential reasons for misclassification by existing 
detectors and to further aid research in developing LLM-generated text 
detectors.

3. Dataset

3.1. Creating the HLPC dataset

Despite the existence of numerous datasets containing human- and 
LLM-generated data, we found no suitable dataset that incorporates also 
their paraphrases which would enable our study, and hence we leverage 
and extend existing datasets for creating the HLPC dataset.1

Overview. We put together a dataset consisting of two types of data, 
each consisting of an original document (DOC) and its paraphrase (PP):

1. Human-generated data: collected from 4 existing datasets, which 
include MRPC, XSum, QQP and MultiPIT, and provide origi-
nal human-written documents (H-DOC) and their paraphrases 
(H-PP).

1 The HLPC dataset can be found at https://github.com/kristylht/Human-
LLM-Paraphrase-Collection-HLPC.

https://github.com/kristylht/Human-LLM-Paraphrase-Collection-HLPC
https://github.com/kristylht/Human-LLM-Paraphrase-Collection-HLPC
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Table 1
Token Length Statistics of H-DOC and H-PP from the 4 corpora.
 Dataset MRPC XSum QQP MultiPIT 
 H-DOC
 max 34 497 31 22  
 min 10 52 10 10  
 mean 23.19 269.23 13.89 12.79  
 H-PP
 max 34 35 35 23  
 min 11 4 6 6  
 mean 23.19 22.09 12.76 12.41  

2. LLM-generated data: original LLM documents (LLM-DOC) are 
generated by using parts of the H-DOC documents above as 
prompts sent to the LLM, and their paraphrases (LLM-PP) are 
generated through a paraphrases that runs five paraphrasing 
iterations on the LLM-DOC documents.

In what follows we further elaborate to describe the data creation 
process in detail.
Human-written and paraphrased documents (H-DOC and H-PP). To re-
trieve human-generated texts alongside their paraphrases, we make 
use of four different datasets, namely Microsoft Research Paraphrase 
Corpus (MRPC) (Dolan and Brockett, 2005), Extreme Summarization 
Dataset (XSum) (Narayan et al., 2018), Quora Question Pairs Dataset 
(QQP) (Wang et al., 2019) and Multi-Topic Paraphrases in Twitter 
(MultiPIT-expert) (Dou et al., 2022). MRPC consists of sentence pairs 
from newswire articles, while XSum dataset contains pairs of BBC 
articles and their summary. QQP dataset includes question pairs from 
Quora, and MultiPIT includes pairs of tweets from Twitter. Therefore, 
the combination of these data sources encompasses both clean and 
well-structured text data from authoritative news companies and noisy 
and unstructured text data from online forums. Since these datasets 
were published before the surge of generative AI, it is assumed that all 
texts are human-generated. As these datasets were originally used for 
paraphrase detection, pairs of sentences in these datasets are labeled as 
paraphrases (label = 1) or non-paraphrases of each other (label = 0), 
among which we are interested in those with a positive label for our 
purposes.

Document filtering. From the H-DOC and H-PP samples above, we 
remove cases of non-paraphrases, sampling only the pairs that are para-
phrases to satisfy our objective of having human paraphrases for every 
human-generated text. Of the remaining pairs, we remove samples with 
fewer than 10 tokens (fewer than 30 tokens in the case of XSum due 
to its greater length), to enable prompt extraction for subsequent LLM 
text generation as described below, as well as those with more than 
512 tokens due to restrictions of GPT-2 for text generation. Finally, we 
randomly sample 150 documents from each set, H-DOC and H-PP, with 
300 documents remaining across both types. Table  1 shows the token 
length statistics of H-DOC and H-PP from the final filtered corpora, 
including the maximum, minimum and mean token length.

We next proceed to generating the LLM texts and their para-
phrases. Fig.  1 illustrates the ‘‘LLM-generated documents (LLM-DOC)’’ 
and ‘‘LLM-generated paraphrases (LLM-PP)’’ generation process.
LLM text generation (LLM-DOC). To generate LLM-based texts that 
resemble the human-generated texts above, we first obtain prompts 
from the human-generated texts above, which are then fed to the LLM 
to generate new texts. The LLM-DOC generation process starts by taking 
the first 5 tokens from H-DOC (first 30 tokens for documents sourced 
from XSum) with a tokenizer, which are used as prompts for the 
language models in the generation process. The models then generate 
text based on the given prompt up to a length of the maximum length 
6

of the H-DOC. We generate two types of LLM-DOC, watermarked and 
non-watermarked, both using two transformer-based language models, 
GPT2-XL (Solaiman et al., 2019) and OPT-1.3B (Zhang et al., 2022), 
along with their respective tokenizers. These models are pretrained 
with a wide range of internet text and therefore are suitable for text 
generation in this project. Default settings are used for parameter 
initialization for both models. Non-watermarked LLM-generated texts 
are output purely generated from the above two models. For water-
marked LLM-DOC generation, watermarks are added by initializing 
a watermark in the logit processor of the models in addition to the 
LLM-DOC process (Kirchenbauer et al., 2023).
LLM paraphrase generation (LLM-PP). We then use the LLM-generated 
documents above to generate their paraphrases. For the outputs from 
the XSum dataset, summaries are first generated using a fine-tuned 
T5 model specializing in news summarization (Mishra, 2020). The 
output summary is limited to a length of maximum length of H-PP 
in the original XSum dataset. The summaries, along with the LLM-
DOC generated documents from the other 3 datasets, are taken to 
generate LLM-PP. We use two paraphrasers, namely DIPPER and BART-
paraphrase models. DIPPER is a T5-XXL paraphrase generation model 
with 11 billion parameters, fine-tuned on 6.3 million data points. 
Inherently, DIPPER is capable of capturing long-term dependencies 
and controlling output diversity (Krishna et al., 2024). However, due 
to computational resource limitations, we use a non-context version, 
resulting in reduced performance on long-term dependency capturing. 
To generate paraphrases with models that capture long-range depen-
dencies, the second model, BART is used. The model is built upon a 
seq2seq architecture, with a bidirectional encoder and a unidirectional 
decoder (Lewis et al., 2019). The bidirectional encoder allows the 
model to understand sentence embeddings in a longer range, thus 
providing more semantic and contextual information for later para-
phrase generation. Particularly, the BART-paraphrase model used in 
this project is a fine-tuned BART model pretrained with 3 paraphrase 
datasets, providing better performance in paraphrase generation. The 
LLM-DOCs from each dataset are passed to these paraphrasers for 
paraphrase (LLM-PP) generation. In order to investigate the effect of 
the recursive paraphrasing attack mentioned in Sadasivan et al. (2023), 
5 rounds of paraphrase generation are conducted, with the 1st of 
paraphrases generated from the LLM-DOC, and the subsequent rounds 
of paraphrases generated iteratively using the outputs of each round.
Final dataset. The final HLPC dataset is composed of 600 documents, 
with a balanced distribution of 150 documents per type, i.e. H-DOC, 
H-PP, LLM-DOC and LLM-PP. These documents are grouped into two 
categories, human-generated (H-DOC and H-PP) and LLM-generated 
(LLM-DOC and LLM-PP). We use these two categories to perform binary 
classification in the LLM- vs human-generated text detection task, 
where we mix both original and paraphrased documents to evaluate 
their impact (particularly that of human-written paraphrases H-PP) on 
the detection models.

3.2. Evaluating the quality of LLM-generated paraphrases

Since paraphrases should inherently not deviate much from the 
original text, it is essential to evaluate the quality of the paraphrases 
in terms of semantic and contextual preservation. Therefore, we eval-
uate the semantic similarities between the original texts and their 
paraphrases to assess the quality of the paraphrasing, as performed 
in Krishna et al. (2024). Semantic similarity is chosen as the statistical 
method for quality assessment since it provides a more comprehensive 
evaluation of meaning and context on text and sentence level, com-
pared to other possible methods, such as NER which evaluate only 
the name entities in the sentence. Human evaluation, as performed 
in Sadasivan et al. (2023) is not performed due to limited resources. 
We use an automated, fine-tuned sentence transformer model (Ansari, 
2023) utilizing distilbert, to generate sentence embeddings for each 
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Table 2
Examples of LLM-generated documents.
 Original Text The dollar rose 0.6 percent to 109.54 yen ⟨ JPY =⟩ and climbed 

more than 1 percent to 1.3315 Swiss francs ⟨ CHF =⟩.
 Non-watermarked GPT Output The dollar rose 0.3 percent to $1.3240 per euro, 

while the euro was little changed at $1.3240. The 
dollar index

 

 OPT Output The dollar rose 0.2 percent against the yen to 
111.85 yen, after hitting a two-week high of 
111.90 yen on Friday.

 

 Watermarked GPT Output The dollar rose 0.2 percent to $1.1234 from 
$1.1218, after touching a high of $1.1218 on 
Friday.

 

 OPT Output The dollar rose 0.1 percent against the yen to 
110.65 yen, after hitting a three-month high of 
110.78 yen on Tuesday.

 

text-paraphrase pair. We then calculate the cosine similarity between 
the embeddings to account for semantic similarity, scoring from −1 
(least similar) to 1 (most similar). Semantic similarities are calculated 
between H-DOC and H-PP and between LLM-DOC and each round of 
LLM-PP.

Looking at human-generated data, MRPC, QQP and MultiPIT score 
over 0.7 for mean semantic similarity scores, indicating a good level of 
semantic preservation, while XSum scores only 0.383 since paraphrases 
in XSum are summaries of the documents. When it comes to LLM-
generated data, first, the results from paraphrases generated from 
DIPPER and BART are compared. Fig.  2 shows the similarity scores 
of watermarked and non-watermarked LLM-DOC and LLM-PP. From 
both graphs, BART outperforms DIPPER in all datasets, particularly in 
MRPC and MultiPIT where BART scores over 0.9 across paraphrasing 
rounds which is even higher than the score from human-generated data. 
DIPPER’s performances are generally worse than human paraphrasing, 
except in XSum. Meanwhile, paraphrases from both paraphrasers ex-
hibit degradation in similarity scores across paraphrasing rounds. With 
recursive paraphrasing, similarity scores from BART decrease slightly 
from an average mean score of 0.80 in the 1st round of paraphrasing 
to 0.785 in the 5th round, while similarity scores of paraphrases gen-
erated by DIPPER decrease significantly from an average mean score 
of 0.727 in the 1st round of paraphrasing to 0.501 in the 5th round. 
BART’s performance under recursive paraphrasing is within expectation 
since paraphrases generated across rounds are similar. However, the 
significant degradation in semantic similarity with DIPPER-generated 
paraphrases indicates that much semantic information is lost across 
paraphrasing rounds, resulting in poor-quality paraphrases that devi-
ate from the original LLM-DOC. Second, the results from paraphrases 
generated from watermarked and non-watermarked LLM-DOC are com-
pared. From Fig.  2, both semantic scores of paraphrases datasets, with 
average mean semantic scores of 0.732 and 0.746, and average degra-
dation rates of mean semantic scores of 0.168 and 0.162 respectively. 
Therefore, it can be concluded that watermarking does not affect the 
quality of paraphrases.

Lastly, we compare the results from paraphrases generated from 
GPT2-generated and OPT-generated documents. Paraphrases generated 
from GPT2-generated documents are of higher quality, with an average 
mean semantic score of 0.788 compared to 0.670 from OPT-generated 
documents. Meanwhile, the rate of quality degradation is similar for 
both models, with average degradation rates of mean semantic scores 
of 0.157 for GPT2 and 0.160 for OPT.

3.3. Descriptive statistics of HLPC

Of the four data sources that we use to build HLPC, documents 
and paraphrases are shorter with MRPC, QQP and MultiPIT, with 
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the highest mean length of 23.19 from MRPC documents, and the 
lowest mean length of 12.41 from MultiPIT paraphrases. XSum has 
longer passages as documents, having a mean length of 269.23, and 
its paraphrases of 22.09.

Looking at the LLM-generated outputs in our dataset, generally 
GPT2 produces outputs with longer text length, having an average 
mean length of 123.54 for non-watermarked outputs and 124.53 for 
watermarked outputs, compared to 117.95 for OPT non-watermarked 
outputs and 118.55 for OPT watermarked outputs. Meanwhile, water-
marking does not affect text length significantly, with watermarked 
outputs having a slightly higher average mean length (121.54) than 
non-watermarked outputs (120.75). This is because watermarking does 
not directly decide token choices during text generation, it simply 
promotes the probability of certain tokens. An example is shown in 
Table  2 that watermarking influences the choice of tokens but poses 
minimal effects on text length.

We next look at the LLM paraphrases (LLM-PP). First, we observe 
that the text length of paraphrases decreases as the number of para-
phrase rounds increases. This is more obvious from paraphrases gen-
erated by DIPPER, with a 31% decrease in average mean length from 
23.82 in the 1st round of paraphrases to 16.38 in the 5th round. Para-
phrases generated from BART are similar in text length across rounds of 
paraphrases. There is no significant difference between the text length 
of paraphrases generated from watermarked and non-watermarked 
LLM-DOC. Second, in terms of content diversity, DIPPER generates 
paraphrases with different choices of wordings compared to the original 
text while preserving the semantic information, and BART generates 
paraphrases that are similar or even identical to the original text. 
An example of recursive DIPPER- and BART-generated paraphrases of 
watermarked GPT output from MRPC is presented in Table  3. For more 
such examples, please see Appendix  A.

4. LLM-generated text detection experiments

We next describe the LLM-generated text detection models we use 
for our experiments, as well as the evaluation metrics.
LLM-generated text detection models. For our experiments, we choose 
to use two SOTA models as LLM-generated text detectors, namely 
OpenAI RoBERTa Detector (Solaiman et al., 2019) and watermark 
detector (Kirchenbauer et al., 2023). The OpenAI Detector is a fine-
tuned RoBERTa model trained with outputs from GPT2 model and 
thus is able to detect GPT2 and various LLM output text (Solaiman 
et al., 2019). The watermark detector classifies text by computing the 
number of green tokens and the probability of its existence in the 
given input (Kirchenbauer et al., 2023). The given input is classified 
as LLM-generated if the probability exceeds the set threshold.
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Table 3
Examples of LLM-generated Paraphrases.
 Paraphraser ppi Text  
 

DIPPER

i = 0 The dollar rose 0. 2 percent to $1.1234 from $1.1218, after touching a high of $1.1218 on Friday.  
 i = 1 The dollar rose 0.10 percent to $1.1234 from $1.1218, after a high of $1.1218 on Friday  
 i = 2 The dollar rose 0.10 percent to $1.1234 from $1.1218.  
 i = 3 The dollar rose by a penny to $1.1234 from $1.1218  
 i = 4 The dollar jumped a penny to $1.1234 from $1.1218.  
 i = 5 A little more, the dollar was up a penny to $1.1234.  
 

BART

i = 0 The dollar rose 0. 2 percent to $1.1234 from $1.1218, after touching a high of $1.1218 on Friday.  
 i = 1 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 2 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 3 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 4 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 5 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
Using the HLPC dataset, we test models on a balanced set of 600 
documents, 300 human-generated and 300 LLM-generated. For testing 
involving LLM-PP, the experiment is repeated 5 times, using each of 
the 5 rounds of AP. The parameters of the watermark detector are 
set according to the parameters used in watermarked AI document 
generation for effective classification. OpenAI Detector is used on non-
watermarked LLM-DOC and their paraphrases, while the watermark 
detector on watermarked LLM-DOC and their paraphrases.
Experiment settings. The experiment is repeated with the outputs from 
different combinations of the 4 datasets (MRPC, XSum, QQP and Mul-
tiPIT), 2 generative language models (GPT and OPT) and 2 para-
phrasers (DIPPER and BART). The final classification is conducted with 
the full set of human-generated data and LLM-generated data, which 
means that 150 samples are taken from each of the documents and 
paraphrases, resulting in a total sample size of 600 for classification.
Evaluation metrics. To evaluate the performance of the LLM text de-
tectors, we compute the accuracy, TPR@1%FPR and AUROC for each 
round of classification. These metrics are chosen as they are widely 
used in the literature, and they provide a comprehensive analysis of the 
classification performance. Specifically, AUROC provides an overview 
of the tradeoff between the true positive rate (correctly classifying LLM-
generated data) and false positive rate (misclassifying human-generated 
data as LLM-generated), and TPR@1%FPR shows the performance of 
the classifiers focused on improving the True Positive Rate (TPR) while 
also trying to keep the False Positive Rate (FPR) low.

The equations of AUROC, TPR and FPR are as follows:

TPR = True Positives (TP)
True Positives (TP) + False Negatives (FN)

FPR = False Positives (FP)
False Positives (FP) + True Negatives (TN) (1)

AUROC = ∫

1

0
TPR(𝑡) 𝑑FPR(𝑡) (2)

TPR@1%FPR is the TPR while FPR is set to a 1% threshold. To in-
vestigate the effects of H-PP in LLM-generated text classification, com-
parisons of classifiers’ performance are made based on the difference in 
the above statistics from various text pairs. Results between LLM-DOC 
and LLM-PP when paired with H-DOC and H-PP are compared.

5. Results & analysis

5.1. Classification with human-generated data and LLM-generated docu-
ments

We perform two classification experiments to observe the effects of 
including H-PP on LLM-generated text detection. The first classification 
is conducted with H-DOC and LLM-DOC, while the second classification 
with H-PP and LLM-DOC.
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Fig.  3(a) shows the ROC curve of the results with non-watermarked 
and watermarked LLM-DOC respectively. First, the results of classifi-
cations in terms of non-watermarked and watermarked LLM-DOC are 
evaluated. For both non-watermarked and watermarked LLM-DOC, the 
results are satisfactory either with or without H-PP, with over 75% 
of classifications scoring an AUROC > 0.85. Among them, the results 
from watermarked LLM-DOC are better than the results from non-
watermarked LLM-DOC, with 87.5% of classification scoring an AUROC 
> 0.85, compared to 62.5% from non-watermarked LLM-DOC. This 
shows that watermarking is a more effective strategy in LLM-generated 
text detection.

Figs.  3(a) and 3(b) show that the inclusion of H-PP generally de-
creases AUROC and accuracy and increases TPR@1%FPR, compared 
to the results with H-DOC. Among all the data sources, results from 
Xsum show the highest decrease of 0.142 AUROC and 0.153 accuracy 
and the highest increase of 0.24 TPR@1%FPR. This implies that H-PP 
might contain similar semantic and contextual information to LLM-
DOC, making it more challenging for the model to distinguish between 
the classes. However, the increase in TPR@1%FPR indicates the iden-
tification of LLM-DOC is promoted while ensuring a low percentage 
of misclassification of human-generated data as LLM-generated (False 
Positive) with H-PP.

In addition, Figs.  3(c) and 3(d) show a different phenomenon while 
including H-PP with watermarked LLM-DOC, with the inclusion of H-
PP generally increasing AUROC, TPR@1%FPR, and posing no effects 
on accuracy. Among all the data sources, Xsum shows the highest 
increase of 0.046 AUROC, and QQP shows the highest increase of 
0.234 TPR@1%FPR. This implies that model performances are pro-
moted while H-PP is included with watermarked LLM-DOC. Overall, 
the results show the effects of including H-PP are highly dependent 
on the types of LLM-DOC used in classification. While it increases 
TPR@1%FPR in all scenarios, it also decreases AUROC and accuracy 
when non-watermarked LLM-DOC are used.

5.2. Classification under recursive paraphrasing

We next evaluate the effects of including H-PP with recursive para-
phrases. In the interest of brevity and focus, we analyze results for 
MRPC GPT-generated text here, but provide full details for all datasets 
in Appendix  B, whose results are consistent with MRPC. The results (H-
PP_pp0, H-PP_pp2 & H-PP_pp5) are compared to the classification result 
without the use of H-PP (pp0, pp2 & pp5). First, the general model 
performance is discussed in terms of the differences between DIPPER 
and BART-generated paraphrases.

Fig.  4 shows that regardless of the presence of watermarking and H-
PP, model performances with DIPPER-generated paraphrases degrade 
to a larger extent than with BART-generated paraphrases across rounds 
of paraphrasing. A decrease of 0.26 in average AUROC and 0.67 in 
average TPR@1%FPR are observed from DIPPER, while BART’s aver-
age AUROC and TPR@1%FPR decrease merely 0.0075 and 0.045 re-
spectively. Particularly, the classification with DIPPER-generated para-
phrases from watermarked LLM-DOC (Fig.  4(c)) shows the highest 
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Table 4
Average results of classification with full human-written and LLM-generated data; bracketed numbers indicate percentage difference.
LLM-generated 
Documents

Paraphraser Data AUROC TPR1%FPR Accuracy

Non-watermarked

DIPPER

pp1 0.908 0.285 0.814
hp_pp1 0.883 0.358 0.769
f_pp1 0.884 (−2.71%) 0.379 (32.98%, 5.86%) 0.778 (−4.62%)
pp5 0.878 0.138 0.811
hp_pp5 0.843 0.169 0.766
f_pp5 0.867 (−1.27%) 0.290 (110.14%, 71.60%) 0.775 (−2.32%)

BART

pp1 0.873 0.209 0.793
hp_pp1 0.839 0.284 0.750
f_pp1 0.874 (0.001%, 4.17%) 0.313 (49.76%, 10.21%) 0.771 (−2.85%)
pp5 0.876 0.201 0.795
hp_pp5 0.842 0.276 0.751
f_pp5 0.874 (−0.002%) 0.341 (69.65%, 23.55%) 0.773 (−2.85%)

Watermarked

DIPPER

pp1 0.652 0.100 0.508
hp_pp1 0.678 0.117 0.508
f_pp1 0.636 (−6.60%) 0.209 (109%, 78.63%) 0.556 (9.45%, 9.45%)
pp5 0.512 0.019 0.500
hp_pp5 0.541 0.022 0.500
f_pp5 0.587 (14.65%, 8.5%) 0.185 (873.68%, 740.91%) 0.554 (10.8%, 10.8%)

BART

pp1 0.825 0.445 0.611
hp_pp1 0.840 0.467 0.611
f_pp1 0.706 (−18.98%) 0.315 (−48.25%) 0.584 (−4.62%)
pp5 0.797 0.398 0.599
hp_pp5 0.813 0.426 0.598
f_pp5 0.700 (−16.14%) 0.307 (−38.76%) 0.581 (−3.10%)
 

 

degradation in model performance, resulting in the lowest AUROC 
of 0.49 which is worse than a random classifier. This can be at-
tributed to the lower semantic similarity between the LLM-DOC and 
DIPPER-generated LLM-PP mentioned in Section 3.2. The low seman-
tic similarity might indicate that DIPPER-generated LLM-PP becomes 
more similar to H-PP coincidentally while deviating from the original 
LLM-DOC, resulting in a degradation in model performance.

In addition, classification with BART-generated LLM-PP (Fig.  4(d)) 
shows excellent results with AUROC 0̃.98 even after 5 rounds of para-
phrasing. Second, the effects of including H-PP in classification are eval-
uated. In both classifications with paraphrases from watermarked and 
non-watermarked LLM-DOC, the performances of the models with H-PP 
are better than those without H-PP, while the effect of the promotion 
is more significant with paraphrases generated from non-watermarked 
LLM-DOC. For classification with paraphrases generated from non-
watermarked LLM-DOC and H-PP (Figs.  4(a) and 4(b)), TPR@1%FPR 
increases from a minimum of 0.02 to a maximum of 0.153 when 
compared to classification with H-DOC. The positive effect is less 
significant on AUROC with an average increase of 0.0028. Although 
minimal effects are cast on AUROC and accuracy with the use of H-PP, 
the significant increase in TPR@1%FPR shows that H-PP helps in the 
detection of LLM-generated data at a low false positive rate, ensuring 
that less human data are classed as LLM-generated.

For classification with paraphrases generated from watermarked 
LLM-DOC and H-PP (Figs.  4(c) and 4(d)), minimal increases in AUROC 
and TPR@1%FPR are observed, with the highest increase in AUROC 
of 0.019 and TPR@1%FPR of 0.02. Overall, it can be concluded that 
including H-PP in the classification under recursive paraphrasing helps 
promoting AUROC and TPR@1%FPR under recursive paraphrasing. 
The comparison of classification results between the inclusion and 
exclusion of H-PP with other datasets and generative models are also 
presented in Appendix  B. Generally, similar results are observed, ex-
cept for classification with Xsum where the inclusion of H-PP reduces 
AUROC.

5.3. Classification with full set of human-generated data and LLM-generated
data

We now perform classification experiments with the full set of 
human-written and LLM-generated data, passing both documents and 
paraphrases to the classifier.
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Table  4 shows the comparison of the average results from classifi-
cation with (i) H-DOC vs LLM-PP (pp1 & pp5), (ii) H-PP vs LLM-PP 
(H-PP_pp1 & H-PP_pp5) and (iii) full human data vs LLM-generated 
data (f_pp1 & f_pp5) across all datasets. First, for results from para-
phrases generated from watermarked LLM-DOC, model performance 
shows extreme opposites depending on the paraphrasers used. The best 
improvement in statistical results is shown using DIPPER-generated 
paraphrases from watermarked LLM-DOC, along with H-DOC, H-PP 
and LLM-DOC (f_pp1 & f_pp5). With the 1st round of paraphrases, 
TPR@1%FPR increases by 109% and 78.63% and accuracy increases 
by 9.45% and 9.45%, compared to only using H-DOC or H-PP respec-
tively. With the 5th round of paraphrases, AUROC increases by 14.65% 
and 8.5%, TPR@1%FPR increases by 874% and 740% and accuracy 
increases by 10.8% and 10.8%, compared to only using H-DOC or H-
PP respectively. This shows that using the full set of data as input 
for classification is significantly effective in improving LLM-generated 
text detection under recursive paraphrasing, with the condition that 
the LLM-DOC is watermarked and paraphrases are DIPPER-generated. 
Meanwhile, the worst performance is shown with BART-generated 
paraphrases from watermarked LLM-DOC under the same condition of 
using the full set of data as input. Compared with the best results, 
results from 1st and 5th rounds of BART-generated paraphrases show 
a degradation of 18.98% and 16.14% in AUROC, 48.25% and 38.76% 
in TPR@1%FPR and 4.62% and 3.10% in accuracy respectively. The 
significant difference in the statistical results shows that the watermark 
detector is highly sensitive to the paraphraser used. While the perfor-
mance improves significantly with DIPPER-generated paraphrases, it 
also degrades significantly with BART-generated paraphrases.

Second, TPR@1%FPR significantly increases while using paraphrases
generated from non-watermarked LLM-DOC along with H-DOC, H-
PP and LLM-DOC, while AUROC and accuracy remain unchanged 
or decrease slightly. Results show that TPR@1%FPR increases by a 
minimum of 5.86% to a maximum of 110.14%, with an average of 
42.84% across different inputs. This indicates that having the full set of 
data as input effectively improves TPR@1%FPR and ensures minimal 
misclassification at a low false positive rate. Meanwhile, AUROC and 
accuracy decrease, compared to the results from H-DOC vs LLM-PP and 
H-PP vs LLM-PP. However, the decrease is less significant compared 
to the increase in TPR@1%FPR. The maximum decrease in AUROC 
and accuracy is merely 4.17% and 4.62% respectively. Therefore, it 
can be concluded that having a full set of data as input exhibits a 
trade-off between accuracy, AUROC and TPR@1%FPR. Considering 
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the significant improvement in TPR@1%FPR and the importance of 
ensuring minimal misclassification, having a full set of data as input 
is suggested to be a better method than using merely H-DOC under 
recursive paraphrasing. Detailed ROC curve and statistical results of 
classification with each dataset and its generations are presented in 
Appendix  C.

5.4. Benefits of using human-written paraphrases in LLM or detectors 
training

In our review of the literature in Section 2 we found that existing 
LLMs are trained on corpora that do not contain H-PP information. 
Since existing detectors are designed to identify the LLM-generated sta-
tistical pattern and watermark from the input text, paraphrasing which 
reduces or erases the above characteristics could effectively evade the 
detectors. Our experiments show that including H-PP in the dataset pro-
motes classification performances under different circumstances, and 
therefore, including H-PP in the training datasets during the training 
of detectors could effectively improve detectors’ classification perfor-
mances since models could learn about the fundamental differences 
of semantic and contextual information between human-written and 
LLM-generated text, even under recursive paraphrasing.

Our results also show that the effectiveness of including H-PP in 
the dataset is highly dependent on the existence of watermarking and 
the type of paraphraser used. In our experiments, while H-DOC is 
included for classification, watermarking and DIPPER-generated para-
phrases help improve classification performance, while experiments 
with non-watermarked and BART-generated paraphrases show the op-
posite. As such, it is important to understand and predict the potential 
usage of watermarking and the type of paraphraser while developing 
the detectors. Detector developers could either get the information from 
users or employ a multi-step classification model for accurate predic-
tion. A multi-step classification model could first identify the presence 
of watermark and the type of paraphrasers, then decide whether to in-
clude H-PP in the training dataset of the detectors based on the results. 
If such technology or information is not available, it is recommended 
to include either H-DOC or H-PP, to avoid significant degradation in 
classification performance. Meanwhile, we show that including H-PP in 
the datasets is highly effective under recursive paraphrasing. As such, 
we recommend that detectors, which are used in circumstances where 
paraphrasing is prevalent, for example, in academic publications, to be 
trained with H-PP instead of only H-DOC, so as to increase AUROC and 
TPR@1%FPR.

6. Conclusion

In this study, our aim was to investigate the effect of human 
paraphrases (H-PP) on LLM-generated text detection by conducting 
classifications with various combinations of human and LLM-generated 
data pairs. To enable this study, we devise a data collection strategy 
and generate the HLPC dataset by leveraging and extending four ex-
isting data sources: MRPC, XSum, QQP and MultiPIT. Unlike previous 
datasets, our new dataset, Human & LLM Paraphrase Collection (HLPC), 
incorporates human-written documents (H-DOC), human-written para-
phrases (H-PP), LLM-generated texts (LLM-DOC) and LLM-generated 
paraphrases (LLM-PP). We generate LLM documents by prompting 
GPT2-XL and OPT-13B with prompts derived from human-written doc-
uments. AI paraphrasers DIPPER and BART are then used to paraphrase 
the generated outputs. Using this dataset, we perform classification 
experiments with SOTA LLM-generated text detectors OpenAI RoBERTa 
and watermark detector, with the aim of understanding the effects of 
incorporating human-written paraphrases in LLM-generated text detec-
tion. Data pairs used for classifications include (i) H-DOC vs LLM-DOC, 
(ii) H-PP vs LLM-DOC, (iii) H-DOC vs LLM-PP, (iv) H-PP vs LLM-PP and 
(v) H-DOC & H-PP vs LLM-DOC & LLM-DOC. 3 comparisons are made 
between the classification results to examine the effects of including 
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H-PP in classification. First, results from (i) and (ii) are compared to 
show H-PP’s effects while classification is done with LLM-DOC. Second, 
results from (iii) and (iv) are compared to show H-PP’s effects under 
recursive paraphrasing. Lastly, results from (v) are compared to results 
from (iii) and (iv) to examine the effects of having a full set of human 
and LLM-generated data.

In our experiments, we observe that in all 3 sets of compar-
isons, including H-PP in the classification is effective in promoting 
TPR@1%FPR, while its effects on AUROC and accuracy are highly de-
pendent on the presence of watermarking and the type of paraphraser. 
In the 1st set of comparison, the results show that TPR@1%FPR 
increases in all scenarios, but AUROC and accuracy decrease if non-
watermarked LLM-DOC are used. For the 2nd set of comparison, AU-
ROC and TPR@1%FPR increases to a small extent in all scenarios, while 
accuracy remains unchanged under recursive paraphrasing. Lastly, for 
the 3rd set of comparison with the full set of data, results vary in 2 
extremes depending on the paraphraser used to generate paraphrases 
from watermarked LLM-DOC, while TPR@1%FPR increase significantly 
and AUROC and accuracy decrease slightly with non-watermarked 
LLM-DOC and their paraphrases. Therefore, it can be concluded that 
the inclusion of H-PP in classification promotes TPR@1%FPR with a 
possible trade-off of AUROC and accuracy.

Our study has potential to be further extended in the future by 
studying additional datasets and detection models, to tackle some 
of the limitations of our study. First, the sentences in the chosen 
datasets are relatively short, with a mean token length of 79.78 for 
H-DOC and 17.61 for H-PP. Since the performance of LLM-generated 
text detectors increases with the input text length, consideration of 
additional datasets with longer sentences would help provide a more 
diverse analysis of the effects of H-PP’s inclusion in classification. 
However, due to the limited availability of datasets that contain H-
PP, only datasets with short sentences are used in this project. Second, 
regarding the quality assessment of LLM-generated paraphrases, addi-
tional metrics and embedding models can be utilized, such as ‘‘Ada 
Score’’ and ‘‘SimCSE Score’’ calculated in Jayawardena et al. (2024), 
in order to evaluate the quality of LLM-generated paraphrases in terms 
of different embedding models. Third, when it comes to the generation 
of paraphrases using LLMs, we used the default settings. Future work 
can explore other variants by generating paraphrases with different 
decoding strategies and parameters of the LLM paraphrasers, with 
the aim of further examining their effects on semantic similarity and 
detector performance. Lastly, other SOTA LLM text detection tools 
could be tested to broaden the findings, such as GPTZero,2 which was 
excluded from our study due to its associated costs.
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Appendix A. Examples of LLM-generated paraphrases

See Table  5.
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Table 5
Examples of LLM-generated paraphrases; ppi means the 𝑖th round of paraphrase.
 MRPC
 Paraphraser Input ppi Text  
 

DIPPER

Watermarked 
GPT Output

i = 0 The dollar rose 0. 2 percent to $1.1234 from $1.1218, after touching a high of $1.1218 on Friday.  
 i = 1 The dollar rose 0.10 percent to $1.1234 from $1.1218, after a high of $1.1218 on Friday  
 i = 2 The dollar rose 0.10 percent to $1.1234 from $1.1218.  
 i = 3 The dollar rose by a penny to $1.1234 from $1.1218.  
 i = 4 The dollar jumped a penny to $1.1234 from $1.1218.  
 i = 5 A little more, the dollar was up a penny to $1.1234.  
 

Watermarked 
OPT Output

i = 0 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 i = 1 The dollar slipped a quarter of a percent against the yen, after hitting a three-month high of 110.65 yen on Tuesday 
 i = 2 The yen slipped a quarter of a percent against the dollar, after hitting a three-month high of 110.60.  
 i = 3 It is a good thing that it is not going to be long. The yen is a little less than one yen, the  
 i = 4 But the yen is a little less than one yen. The yen is just a tenth of a yen.  
 i = 5 This is the amount of ten thousand yen, but the yen is only ten thousand yen.  
 

Non-
watermarked 
GPT Output

i = 0 The dollar rose 0.3 percent to $1.3240 per euro, while the euro was little changed at $1.3240. The dollar index  
 i = 1 The dollar was gaining 0.3 percent to $1.3240, and the Euro was less than $1,400.  
 i = 2 The dollar was up 0.3 percent to $1.3240. The Euro was less than $1,400.  
 i = 3 It was a little over $2,000. The Euro was not much more than $3,000.  
 i = 4 The Euro was not much more than a thousand rubles.  
 i = 5 The Euro was less than a thousand rubles.  
 

Non-
watermarked 
OPT Output

i = 0 The dollar rose 0.2 percent against the yen to 111.85 yen, after hitting a two-week high of 111.90 yen on Friday.  
 i = 1 On Friday the yen rose by 0.2 percent against the yen. The yen fell by 0.2 percent against the dollar. The pair had 

hit
 

 i = 2 The pair had fallen to the tenth day of the previous month. On Friday the yen rose by 0.2 percent against the 
dollar.

 

 i = 3 On Friday the yen rose by 0.2 percent against the dollar. The pair had fallen to the tenth day of the previous 
month.

 

 i = 4 But if you were to use the yen as an example, you would have a hard time keeping up the momentum. On Friday, 
the dollar fell by

 

 i = 5 But you would have to think of the yen as an example, and I doubt if you would be able to sustain the momentum. 
 

*

BART

Watermarked 
GPT Output

i = 0 The dollar rose 0. 2 percent to $1.1234 from $1.1218, after touching a high of $1.1218 on Friday.  
 i = 1 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 2 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 3 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 4 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 i = 5 The dollar rose 0.2 percent to $1.1234 on the New York Stock Exchange, after touching a high of $.1218 on Friday. 
 

Watermarked 
OPT Output

i = 0 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 i = 1 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 i = 2 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 i = 3 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 i = 4 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 i = 5 The dollar rose 0.1 percent against the yen to 110.65 yen, after hitting a three-month high of 110.78 yen on 
Tuesday.

 

 
Non-
watermarked 
GPT Output

i = 0 The dollar rose 0.3 percent to $1.3240 per euro, while the euro was little changed at $1.3240. The dollar index  
 i = 1 The dollar rose 0.3 percent against the euro to $1.3240, while the euro was little changed against the dollar at 

1.3243.
 

 i = 2 The dollar rose 0.3 percent against the euro to $1.3240, while the euro was little changed against the dollar at 
1.3243.

 

 i = 3 The dollar rose 0.3 percent against the euro to $1.3240, while the euro was little changed against the dollar at 
1.3243.

 

 i = 4 The dollar rose 0.3 percent against the euro to $1.3240, while the euro was little changed against the dollar at 
1.3243.

 

 i = 5 The dollar rose 0.3 percent against the euro to $1.3240, while the euro was little changed against the dollar at 
1.3243.

 

 
Non-
watermarked 
OPT Output

i = 0 The dollar rose 0.2 percent against the yen to 111.85 yen, after hitting a two-week high of 111.90 yen on Friday.  
 i = 1 The dollar rose 0.2 percent against the yen to 110.85 yen, after hitting a two-week high of 110.90 yen on Friday.  
 i = 2 The dollar rose 0.2 percent against the yen to 110.85 yen, after hitting a two-week high of 110.90 yen on Friday.  
 i = 3 The dollar rose 0.2 percent against the yen to 110.85 yen, after hitting a two-week high of 110.90 yen on Friday.  
 i = 4 The dollar rose 0.2 percent against the yen to 110.85 yen, after hitting a two-week high of 110.90 yen on Friday.  
 i = 5 The dollar rose 0.2 percent against the yen to 110.85 yen, after hitting a two-week high of 110.90 yen on Friday.  
Appendix B. Classification results with human-written document/ 
paraphrases and LLM-generated paraphrases

See Figs.  5–18.
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Appendix C. Classification results with full human-written data 
and LLM-generated data

See Figs.  19–34.
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Fig. 5. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from MRPC 
OPT-Generated Text.

Fig. 6. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from MRPC 
OPT-Generated Text.

Fig. 7. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from XSum 
GPT-Generated Text.
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Fig. 8. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from XSum 
GPT-Generated Text.

Fig. 9. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from XSum 
OPT-Generated Text.

Fig. 10. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from XSum 
OPT-Generated Text.
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Fig. 11. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from QQP 
GPT-Generated Text.

Fig. 12. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from QQP 
GPT-Generated Textt.

Fig. 13. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from QQP 
OPT-Generated Text.
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Fig. 14. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from QQP 
OPT-Generated Text.

Fig. 15. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from MultiPIT 
GPT-Generated Text.

Fig. 16. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from MultiPIT 
GPT-Generated Text.
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Fig. 17. ROC Curve from OpenAI Detector with Human-generated Documents/Paraphrases and Non-watermarked DIPPER (left) / BART-generated (right) Paraphrases from MultiPIT 
OPT-Generated Text.

Fig. 18. ROC Curve from Watermark Detector with Human-generated Documents/Paraphrases and Watermarked DIPPER (left) / BART-generated (right) Paraphrases from MultiPIT 
OPT-Generated Text.

Fig. 19. ROC Curve with Full Human Data and Non-watermarked MRPC LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MRPC GPT2-generated Text).
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Fig. 20. ROC Curve with Full Human Data and Watermarked MRPC LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MRPC GPT2-generated Text).

Fig. 21. ROC Curve with Full Human Data and Non-watermarked MRPC LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MRPC OPT-generated Text).

Fig. 22. ROC Curve with Full Human Data and Watermarked MRPC LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MRPC OPT-generated Text).
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Fig. 23. ROC Curve with Full Human Data and Non-watermarked XSum LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from XSum GPT-generated Text).

Fig. 24. ROC Curve with Full Human Data and Watermarked XSum LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from XSum GPT-generated Text).

Fig. 25. ROC Curve with Full Human Data and Non-watermarked XSum LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from XSum OPT-generated Text).
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Fig. 26. ROC Curve with Full Human Data and Watermarked XSum LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from XSum OPT-generated Text).

Fig. 27. ROC Curve with Full Human Data and Non-watermarked QQP LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from QQP GPT-generated Text).

Fig. 28. ROC Curve with Full Human Data and Watermarked QQP LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from QQP GPT-generated Text).
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Fig. 29. ROC Curve with Full Human Data and Non-watermarked QQP LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from QQP OPT-generated Text).

Fig. 30. ROC Curve with Full Human Data and Watermarked QQP LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from QQP OPT-generated Text).

Fig. 31. ROC Curve with Full Human Data and Non-watermarked MultiPIT LLM-Data (Paraphrases generated with DIPPER (left) and MultiPIT (right) from MultiPIT GPT-generated 
Text).
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Fig. 32. ROC Curve with Full Human Data and Watermarked MultiPIT LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MultiPIT GPT-generated Text).
Fig. 33. ROC Curve with Full Human Data and Non-watermarked MultiPIT LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MultiPIT OPT-generated 
Text).
Fig. 34. ROC Curve with Full Human Data and Watermarked MultiPIT LLM-Data (Paraphrases generated with DIPPER (left) and BART (right) from MultiPIT OPT-generated Text).
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