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 A B S T R A C T

Stance detection is the task of determining the viewpoint expressed in a text towards a given target. A 
specific direction within the task focuses on cross-target stance detection, where a model trained on samples 
pertaining to certain targets is then applied to a new, unseen target. With the increasing need to analyze 
and mine viewpoints and opinions online, the task has recently seen a significant surge in interest. This 
review paper examines research in cross-target stance detection over the last decade, highlighting the evolution 
from basic statistical methods to contemporary neural and LLM-based models. All this research has led to 
notable improvements in accuracy and adaptability. Innovative approaches include the use of topic-grouped 
attention and adversarial learning for zero-shot detection, as well as fine-tuning techniques that enhance 
model robustness. Additionally, prompt-tuning methods and the integration of external knowledge have further 
refined model performance. A comprehensive overview of the datasets used for evaluating these models is also 
provided, offering valuable insights into the progress and challenges in the field. We conclude by highlighting 
emerging research directions and suggesting avenues for future work.
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1. Introduction

In today’s information-centric world, information is increasingly 
available through the Internet and social media platforms, much of 
which contains opinionated content reflecting people’s views. This 
presence continues to expand alongside the increasing popularity of 
social media platforms, which, as per recent statistics, are utilized by 
more than 80% of the UK’s population in 2024,1 which is also garnering 
significant public attention (Tian, Zhang, Wang, & Liu, 2020). However, 
due to the large volume of posts, monitoring opinions expressed on 
social media platforms remains a cumbersome and often infeasible 
task if done manually, necessitating automated assistance (Liu, 2022; 
Zubiaga, 2019). Consequently, there is a pressing need for innovative 
and improved methods to automatically classify and process these texts, 
discerning the stance conveyed within, with the ultimate goal of mining 
public opinion. Indeed, social media provide access to unprecedented 
volumes of information from a diversity of users to form an estimate of 
the public opinion on a particular matter (Dong & Lian, 2021).

The rapid growth of social media platforms has brought forth new 
challenges in the field of information processing (Jamadi Khiabani, 
Basiri, & Rastegari, 2020). One prominent research area addressing 
opinions within social networks is Stance Detection (SD), which has 
the aim of forecasting the stance expressed in a text towards a specific 
entity (Biber & Finegan, 1988). Monitoring individual opinions or 
broader trends within communities and populations can yield valuable 
insights, particularly in domains such as politics, where it enables swift 
comprehension of public support towards certain topics or prediction of 
voting behavior. Beyond its application to the domain of politics, stance 
detection plays a crucial role in detecting misinformation, where iden-
tifying stance inconsistencies can flag potentially misleading narratives, 
and in public health interventions, where analyzing public attitudes 
towards health policies can guide effective communication strategies. 
These applications underline the real-world impact of stance detection 
in addressing societal challenges.

In the stance detection problem, the input typically consists of a pair 
comprising a text and a target, and the output is a category chosen from 
the following 3-way set: Favor, Against, None (Alturayeif, Luqman, & 
Ahmed, 2023), or at times only two categories: Favor, Against. For 
example, for a text that says ‘‘I believe that climate change is a hoax’’, 
and where the target is the ‘‘societal impact of climate change’’, the 
stance would be ‘‘None’’. This label is determined because the text does 
not directly express a favorable or opposing view towards the societal 
impact of climate change but instead denies the validity of climate 
change itself. The stance is classified as ‘‘None’’ in such cases because 
it neither explicitly aligns with nor opposes the target in question, 
adhering to the principle that the ‘‘None’’ category is reserved for 
texts that lack a direct stance towards the given target. On occasions, 
some researchers expand this 3-way set to also include the category 
‘‘Neutral’’, indicating that the author shows a neutral stance towards 
the target (Grimminger & Klinger, 2021). However, it is also argued 
that a truly neutral stance is rare, as people generally lean either in 
favor of or against a proposition (Jaffe, 2009). Moreover, the consensus 
in the literature suggests that if a text’s stance towards a target is 
neither favorable nor opposing, the appropriate category should be 
‘‘None’’ rather than ‘‘Neutral’’, since the text does not provide any clear 

1 https://datareportal.com/reports/digital-2024-united-kingdom.
2

stance information. Consequently, the ‘‘None’’ category is typically used 
for all cases that do not fall into the Favor or Against categories.

It should be noted that the target is anything for which a stance can 
be expressed, such as an entity, concept, event, idea, opinion, claim, 
or topic —-whether explicitly stated or implied within the text (Mo-
hammad, Kiritchenko, Sobhani, Zhu, & Cherry, 2016a; Sobhani, 2017). 
For example, in the text ‘‘I consider myself pro-life’’, the target topic 
‘‘abortion’’ is implicit. The general scheme for 3-way stance detection is 
provided in Fig.  1. While the stance detection task has been popular for 
a relatively long period, one of the emerging foci over the last decade 
has been on cross-target stance detection (i.e. determining the stance 
for targets not seen during training), which is the focus of discussion 
of this survey paper.

1.1. Scope of the survey

This survey covers cross-target and zero-shot stance detection, fo-
cusing on publicly available datasets and methods that advance these 
research areas. The included datasets were selected based on relevance 
and impact, particularly for their suitability in cross-target scenarios 
and zero-shot configurations. Our selection process involved searching 
Google Scholar with keywords like ‘‘cross-target stance detection’’, 
‘‘zero-shot stance detection’’, and ‘‘stance detection datasets’’. We prior-
itized datasets that are frequently cited, publicly accessible, and cover 
diverse domains such as politics, health, and finance.

Datasets like SemEval-2016 Task 6, VAST, and P-Stance were chosen 
for their specific design to support cross-target or zero-shot stance de-
tection, making them ideal for evaluating model generalization across 
unseen targets. Datasets like RumourEval and COVID-19, with their 
varied topics and annotations, offer robust benchmarks for models to 
handle real-world complexities. This survey aims to provide a struc-
tured overview of these datasets and to highlight their roles in advanc-
ing stance detection research.

In addition to datasets, this survey explores the evolution of cross-
target stance detection methods since 2016. Over this period, signifi-
cant advancements have been made, with researchers employing var-
ious strategies to enhance model performance across diverse datasets 
and scenarios. The survey categorizes existing approaches into five ma-
jor types: (1) Statistics-based methods, (2) Fine-tuning-based methods, 
(3) Prompt-tuning-based methods, (4) Knowledge-enhanced methods, 
and (5) Knowledge-enhanced Prompt-tuning methods. Each category 
represents a different approach to tackling the challenges of cross-target 
stance detection, reflecting the innovative trends and research focus 
areas that have emerged in the field. This comprehensive overview pro-
vides insight into the current landscape of cross-target stance detection, 
highlighting both foundational and cutting-edge methods.

1.2. Related surveys

Several surveys have explored stance detection from various angles. 
Al-Dayel et al. offer a broad review of research in NLP, computational 
social science, and web science, covering foundational aspects and 
various methods, including network and contextual features. Their 
focus spans from traditional techniques to emerging trends in stance 
detection (AlDayel & Magdy, 2021).

Alturayeif et al. provide an overview of traditional stance detection 
methods and datasets up to 2022, emphasizing statistical models and 
foundational neural networks. They set the groundwork for understand-
ing stance detection but do not delve deeply into the most recent 
advancements (Alturayeif et al., 2023).

https://datareportal.com/reports/digital-2024-united-kingdom
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Fig. 1. Stance detection scheme and its labels.
Motyka et al. focus on target-phrase stance detection and zero-shot 
learning, addressing dataset limitations and comparing state-of-the-
art methods. Their work highlights prompt-based learning and dataset 
inconsistencies (Motyka & Piasecki, 2024).

In contrast, our review paper is the first with a focus on cross-
target stance detection, providing a detailed examination of advance-
ments over the last decade and primarily from 2016 to 2024. We 
emphasize recent innovations such as zero-shot detection, reviewing 
fine-tuning, prompt-tuning, and knowledge-enhanced techniques. Our 
review categorizes methodologies into five distinct types and explores 
the evolution of cross-target stance detection more comprehensively, 
offering a nuanced and current perspective on the field.

2. Background on stance detection

2.1. Problem formulation of stance detection

Stance Detection is a crucial task within Online Social Network 
(OSN) analysis, aiming to discern whether individuals express a fa-
vorable, opposing, or neutral stance towards specific targets, which 
could range from personal opinions to institutional policies or product 
preferences. Users articulate their stances across various platforms like 
online forums, Twitter, YouTube, and Instagram (Sobhani, Mohammad, 
& Kiritchenko, 2016). This process not only facilitates individuals in 
expressing their viewpoints but also enables the aggregation of valu-
able insights, spanning from individual preferences to organizational 
and governmental perspectives (Darwish, Stefanov, Aupetit, & Nakov, 
2020). Stance Detection thus emerges as a vital component within 
opinion mining, closely aligned with the analysis of user sentiments 
across social media platforms.

Stance detection is defined as the process of categorizing each post 
in a collection 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑛} into one of three stances : ‘‘favor’’, 
‘‘against’’, or ‘‘none’’ in a 3-class setting and into one of two stances: 
‘‘favor’’ or ‘‘against’’ in a 2-class setting. Each post 𝑝𝑖 expresses a stance 
towards a specific target 𝑡. Stance datasets consist of posts expressing 
stances towards targets in a collection 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑚}.

The in-target stance detection is the process of training and testing 
the model on the same target 𝑡𝑖. However, the cross-target stance de-
tection task involves predicting the stance expressed in posts referring 
to target 𝑡𝑖, where the training data is composed of posts referring to 
other targets excluding 𝑡𝑖, hence requiring a transfer of knowledge from 
one set of targets to another.

2.2. Stance detection vs. sentiment analysis

In the literature, stance detection is often deemed to be closely 
related to, and sometimes even conflated with, sentiment analysis. 
This is however often deemed to be a misconception of the concept 
3

of stance, and in fact research has shown that there are substantial 
differences between stance and sentiment (Aldayel & Magdy, 2019a). 
Indeed, sentiment analysis deals with identifying the explicit senti-
ment polarity expressed in a text, typically categorized as Positive, 
Negative, or Neutral. In contrast, stance detection seeks to determine 
the stance of a text towards a target, such as an event, entity, idea, 
claim, or topic (Alturayeif et al., 2023). For example, the text ‘‘I’m 
glad that Donald Trump lost the election’’ indicates a positive overall 
sentiment, whereas the stance towards Donald Trump is negative. The 
key distinctions between sentiment analysis and stance detection are: 
(1) sentiment analysis addresses the overall sentiment of the text often 
without a specific target, which is necessary in stance detection, and (2) 
the sentiment and stance towards a target within the same text might 
not match. For example, the text could have a positive overall sentiment 
while expressing a negative stance towards a particular target, or 
the reverse (Küçük & Can, 2020). Fig.  2 shows examples with their 
sentiment and stance labels (AlDayel & Magdy, 2021).

Two subproblems of sentiment analysis are notably closer to stance 
detection than the broader sentiment analysis problem itself (Küçük & 
Can, 2020):

Aspect-Oriented (or Aspect-Based, or Aspect-Level) Sentiment 
Analysis: This subproblem delves into the sentiment polarities towards 
a target entity and its various aspects within a given text input (Pontiki 
et al., 2014; Schouten & Frasincar, 2015). Typically, it is treated as a 
slot-filling task involving three slots: the target entity, the aspect of the 
entity, and the sentiment polarity towards that aspect. Commonly ex-
amined target entities in shared datasets for aspect-oriented sentiment 
analysis include electronic devices like laptops, restaurants, and hotels, 
while corresponding aspects might include price, design, and quality, 
among others.

Target-Dependent (or Target-Based) Sentiment Analysis: This 
subproblem focuses on determining the sentiment polarity towards a 
specific target entity within the text, given a text and target pair (Jiang, 
Yu, Zhou, Liu, & Zhao, 2011). A similar variant is open-domain targeted 
sentiment analysis, where both a named entity and the sentiment 
towards that entity are explored in the input text (Mitchell, Aguilar, 
Wilson, & Van Durme, 2013). As outlined in Ebrahimi, Dou, and Lowd 
(2016), key distinctions between stance detection and target-dependent 
sentiment analysis include: (1) the stance target may not be explicitly 
provided in the input text, (2) the stance target may not necessarily be 
the target of the sentiment in the text, and (3) while the stance target 
could be an event, targets in sentiment analysis are typically entities 
or aspects. These differences similarly extend to stance detection and 
open-domain targeted sentiment analysis.

3. Stance datasets

In this section, we discuss publicly available datasets which have 
been released in the scientific literature, particularly focusing on those 
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Fig. 2. Some examples regarding the differences between sentiment and stance.
datasets that are suited to or have been used for cross-target stance 
detection. As a summary, Table  1 presents a comparative analysis of 
the most widely used stance detection datasets, which we discuss in 
more detail next.

SemEval-2016 Task 6 (Sem2016T6): This dataset presented by 
Mohammad et al. focused on detecting the stance expressed in tweets 
towards predefined targets. The challenge was divided into two sub-
tasks: Task A, a supervised stance detection task with five targets—
Atheism, Climate Change is a Real Concern, Feminist Movement, 
Hillary Clinton, and Legalization of Abortion—and Task B, a weakly 
supervised task centered on a single target, Donald Trump, for which 
no labeled training data was provided. In Task A, approximately 70% 
of the data was used for training and 30% for testing. This task saw 19 
submissions, with the highest F-score reaching 67.82. Task B, dealing 
with the lack of training data, had 9 submissions and achieved a 
top F-score of 56.28, illustrating the challenge of stance detection 
without explicit training data (Mohammad, Kiritchenko, Sobhani, Zhu, 
& Cherry, 2016b).

The dataset comprised 4870 annotated tweets categorized into ‘fa-
vor’, ‘against’, and ‘neither’. Tweets were collected using target-related 
hashtags and manually annotated by crowd workers. The evaluation 
employed macro-average F1-scores for the ‘favor’ and ‘against’ classes, 
treating the ‘neither’ class as non-interest in this context. This task 
highlighted the complexities of stance detection, particularly when the 
target is not directly mentioned, and aimed to advance research by 
providing data and tools for further exploration in stance detection and 
related areas. The dataset is suitable both for stance detection and for 
cross-target stance detection, evaluating performance on the remaining 
target in the zero-shot configuration.

Emergent: The Emergent dataset is a valuable asset developed 
from a digital journalism initiative aimed at combating misinformation. 
It encompasses 300 rumor claims and 2595 related news articles, 
with each claim and article meticulously annotated by journalists. The 
dataset categorizes the claims into three veracity labels: true, false, or 
unverified. Each news article is further summarized with a headline 
and labeled according to its stance towards the associated claim. The 
stance labels—‘‘for’’, ‘‘against’’, and ‘‘observing’’—indicate whether the 
article supports, refutes, or simply reports the claim without evalua-
tion. This comprehensive approach provides a rich source for various 
natural language processing applications, especially those focused on 
fact-checking (Ferreira & Vlachos, 2016).

Emergent stands out due to its emphasis on stance classification at 
the headline level, capturing how articles position themselves relative 
to the claims they discuss. This dataset includes a wide array of claims 
on topics ranging from global news to technology, facilitating thorough 
evaluation of stance detection methods. The dataset features a well-
distributed range of stance labels—47.7% for, 15.2% against, and 
37.1% observing—which enhances the reliability of stance classifica-
tion models. By integrating data from real-world journalism, Emergent 
offers a more authentic challenge for NLP techniques. Innovations in 
feature extraction, including syntactic analysis and word alignment, 
have resulted in improved accuracy for stance detection, positioning 
Emergent as a crucial tool for advancing automated fact-checking and 
computational journalism research.
4

Multi-target: The Multi-Target stance dataset is an innovative re-
source developed to address the challenge of stance detection towards 
multiple related targets within a single document. This dataset com-
prises 4455 tweets, each annotated to reflect stances towards two 
specific targets simultaneously. Focused on the 2016 US presidential 
election, it includes tweets related to four candidates: Donald Trump, 
Hillary Clinton, Ted Cruz, and Bernie Sanders. The dataset is parti-
tioned into training (70%), development (10%), and test (20%) sets, 
and also provides a larger collection of unlabeled data for additional 
exploration. This resource is designed to capture the nuanced relation-
ships and dependencies between stances on related targets, which is 
often overlooked in traditional stance detection models that treat each 
target independently (Sobhani, Inkpen, & Zhu, 2017).

The dataset’s key innovation lies in its approach to modeling stance 
dependencies using advanced neural network architectures. The au-
thors propose a sequence-to-sequence model with an attention mech-
anism to jointly predict stances for pairs of targets. This model outper-
forms simpler methods such as window-based or cascading classifiers 
by addressing the interdependencies between stance labels. By in-
corporating attention-based encoder–decoder frameworks, the dataset 
facilitates more accurate stance prediction and better reflects real-
world complexities where opinions on multiple related targets are 
interrelated. This public dataset aims to advance research in multi-
target stance detection and offers a robust foundation for developing 
and testing models that can handle interconnected subjectivities in 
various contexts.

VAST: This dataset presented by Allaway et al. includes 18,515 
comments from the New York Times ‘‘Room for Debate’’ section, cov-
ering a wide array of topics such as politics (e.g., ‘‘a Palestinian state’’), 
education (e.g., ‘‘charter schools’’), and public health (e.g., ‘‘childhood 
vaccination’’). Each comment is annotated with one of three stance 
labels: pro, con, or neutral. This dataset is particularly valuable for 
zero-shot stance detection due to its broad range of topics and di-
verse expressions. Unlike existing datasets with a limited number of 
topics and expressions, VAST includes a variety of similar expressions 
(e.g., ‘‘guns on campus’’ versus ‘‘firearms on campus’’) to capture 
realistic linguistic variations. This variation helps address the challenge 
of evaluating zero-shot and few-shot stance detection by incorporating 
diverse topic representations (Allaway & McKeown, 2020).

To create VAST, comments were extracted from the Argument 
Reasoning Comprehension (ARC) Corpus, and topics were heuristically 
identified and verified using crowdsourcing. The dataset features multi-
ple types of annotations: heuristically extracted topics, corrected topics 
provided by annotators, and additional topics listed by annotators. 
Neutral examples were also included to account for comments that do 
not convey a clear stance. The resulting dataset has a median of four 
unique topics per comment and is well-suited for developing models 
for zero-shot and few-shot stance detection, given its complexity and 
variety of topics.

RumourEval: This dataset, developed for the SemEval 2017 shared 
task, offers a comprehensive resource to study misinformation on social 
media. This dataset is designed to address two primary challenges: 
stance classification and veracity prediction. It includes a substan-
tial collection of tweets organized into tree-structured conversation 
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Table 1
Stance detection datasets.
 Dataset Language Size Domain Targets  
 SemEval Task 6.A (2016) English 4870 Social and political 

(Twitter)
‘Atheism’, ‘Climate change’: CC, ‘Feminist 
movement’: FM, ‘Hillary Clinton’: HC, 
‘Legalization of abortion’: LA

 

 Semeval Task 6.B (2016) English 707 labeled tweets 
and 78,000 unlabeled 
tweets

Political (Twitter) Unlabeled tweets related to Trump  

 Emergent (2016) English 300 claims and 2595 
headlines

News headlines Claims extracted from rumor sites and Twitter  

 Multi-target (2017) English 4455 Political (Twitter) ‘Clinton–Sanders’, ‘Clinton–Trump’, 
‘Cruz–Trump’

 

 VAST (2020) English 4986 Politics, education, and 
public health

A large range of topics from The New York 
Times ‘Room for Debate’ section, part of the 
Argument Reasoning Comprehension (ARC) 
Corpus

 

 RumourEval (2017) English 5568 Social (Twitter) Rumorous tweets  
 RumourEval (2019) English 8574 Twitter and Reddit Various events  
 CD (2019) English 6324 Twitter ‘‘Anthony S. Fauci, M.D.,’’ ‘‘Keeping Schools 

Closed’’, ‘‘Stay at Home Orders’’, and ‘‘Wearing 
a Face Mask’’.

 

 COVID-19 (2021) English 6133 Twitter ‘Anthony S. Fauci, M.D’, ‘Keeping Schools 
Closed’, ‘Stay at Home Orders’, and ‘Wearing a 
Face Mask’

 

 STANDER (2020) English 3291 Social media and news News articles focused on four major U.S. 
healthcare mergers and acquisitions (M&A)

 

 WT-WT (2020) English 51,284 Financial (Twitter) Various targets about companies mergers and 
acquisitions: ‘Cigna-Express Scripts’, 
‘Aetna-Humana’, ‘CVS-Aetna’, ‘Anthem-Cigna’, 
and ‘Disney-Fox’

 

 P-Stance (2021) English 21,574 Politics (Twitter) ‘Donald Trump’, ‘Joe Biden’, and ‘Bernie 
Sanders’

 

 MSDD (2022) English 1296 TV shows ‘‘Friends’’ and 
‘‘The Big Bang Theory’’,

Text, gestures (video), and prosodic cues 
(audio)

 

 CoVaxNet (2023) English 21,574 Politics (Twitter) Social media posts, fact-checking reports, 
COVID-19 statistics, U.S. Census data, 
government responses, and local news reports

 

 ISD (2023) English 6027 Politics (Twitter) ‘Donald Trump’ and ‘Joe Biden’  
 ProCons (2023) Chinese 21,574 Weibo Social media posts, fact-checking reports, 

COVID-19 statistics, U.S. Census data, 
government responses, and local news reports

 

 C-STANCE (2023) Chinese 48,126 Politics (Twitter) 40,204 responses and local news reports  
 MMVAX-STANCE (2023) English 11,300 Social media (COVID-19 

vaccination)
113 distinct frames of communication  

 MT-CSD (2024) English 15,876 Reddit Multiple targets, including ‘‘Tesla’’, ‘‘SpaceX’’, 
‘‘Donald Trump’’, ‘‘Joe Biden’’, and ‘‘Bitcoin’’, 
U.S. Census data, government responses, and 
local news reports

 

 MmMtCSD (2024) English 21,340 ocial media (target, text, 
and an image)

Multiple targets, including , ‘‘Tesla’’ and 
‘‘Bitcoin’’, along with a ‘‘Post-T’’

 

 Multi-modal SD (2024) English 15,876 Twitter (text, images or 
videos)

Derived from three established stance detection 
datasets—Twitter Stance Election 2020, 
COVID-CQ, and Will-They-Won’t-They—and 
cover emerging topics such as the 
Russo-Ukrainian Conflict and the Taiwan 
Question.

 

threads. The dataset covers eight major events, such as the Char-
lie Hebdo shooting and the Ferguson unrest, and consists of 4519 
tweets for training and 1080 tweets for testing. Each tweet in these 
threads is labeled with one of four stance categories—Support, Deny, 
Query, or Comment—in response to a rumor, and the dataset also 
includes veracity labels indicating whether the rumor is true, false, or 
unverified (Derczynski et al., 2017).

A notable innovation of RumourEval is its focus on the conversa-
tional context around rumors, which is captured through direct and 
nested replies. This approach allows for a nuanced analysis of how 
public discourse evolves around a rumor, providing valuable insights 
5

into public sentiment and engagement. Additionally, the dataset in-
corporates external context, such as Wikipedia articles, to aid in the 
veracity prediction task. The annotation process combines expert and 
crowdsourced labeling, ensuring high-quality data for both stance and 
veracity classification. This structured and contextually rich dataset sets 
a benchmark for future research in rumor detection and misinformation 
analysis.

RumourEval 2019: This dataset builds upon its predecessor from 
2017 to advance the automated verification of online rumors. It com-
prises a comprehensive collection of social media posts from both 
Twitter and Reddit, reflecting a broad spectrum of news events and 
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public reactions. The dataset is structured around two main subtasks: 
stance detection and rumor verification. For Task A, which focuses on 
stance detection, the dataset comprises a total of 8574 posts, including 
both training and test data. This dataset features tweets and Reddit 
posts, which are annotated with stances categorized as supporting, 
denying, querying, or commenting. Task B, dedicated to rumor ver-
ification, includes 446 posts, which are classified into three veracity 
categories: true, false, or unverified. The dataset has been significantly 
expanded, now including 297 source tweets with associated discus-
sions, and augmented by new tweets and Reddit posts, increasing the 
depth and diversity of the data (Derczynski et al., 2017).

Innovatively, RumourEval 2019 introduces a mix of new and exist-
ing sources, such as the inclusion of Reddit, which provides longer and 
more complex discussions compared to Twitter. The dataset’s richness 
is further enhanced by the introduction of additional natural disaster-
related tweets and comprehensive stance annotations collected through 
crowd sourcing, ensuring high-quality and nuanced data. This iteration 
also emphasizes the integration of stance information from Subtask A 
into the rumor verification process in Subtask B, allowing for a more 
sophisticated approach to assessing rumor accuracy. The expanded and 
diverse dataset reflects the growing importance of automating rumor 
detection and verification in the face of increasing misinformation on 
social media platforms.

Context-Dependent Stance Detection Dataset (CD): The CD
dataset focuses on the relationship between sentiment and stance, using 
about 6324 reply tweets on four controversial topics: Antisemitism 
(AS), Gender (G), Immigration (I), and LGBTQ (L). The dataset provides 
both parent and reply tweets, offering context for more accurate 
stance and sentiment annotations. Annotations were completed by 
five annotators using the Figure-eight platform, with a majority vote 
used to assign labels. The dataset explores the correlation between 
sentiment polarity and stance, revealing that sentiment and stance are 
not always aligned, which challenges the use of sentiment alone for 
stance detection. The dataset is built upon the SemEval stance dataset, 
which includes tweets on topics like Atheism, Climate Change, and 
Feminism. The results demonstrate the need for nuanced analysis in 
stance detection (Aldayel & Magdy, 2019a).

COVID-19: This Stance dataset is a pivotal resource designed to 
facilitate stance detection in the context of the COVID-19 pandemic, 
capturing public sentiment on key issues such as health mandates. This 
dataset includes 6133 manually annotated tweets centered on four con-
troversial targets: ‘‘Anthony S. Fauci, M.D.’’, ‘‘Keeping Schools Closed’’, 
‘‘Stay at Home Orders’’, and ‘‘Wearing a Face Mask’’. The tweets are cat-
egorized into three stance labels: in-favor, against, and neither, allow-
ing for nuanced analysis of public opinion. The data collection process 
spanned from February to August 2020, utilizing a variety of pandemic-
related keywords and hashtags to capture relevant tweets, ensuring 
the dataset’s comprehensiveness and relevance (Glandt, Khanal, Li, 
Caragea, & Caragea, 2021).

One of the dataset’s major innovations is its meticulous annotation 
process, which involved crowdsourcing through Amazon Mechanical 
Turk and rigorous agreement measures to ensure data quality. This 
dataset not only provides stance labels but also includes annotations 
for sentiment and the explicitness of the opinion, adding layers of 
complexity for model training. The COVID-19-Stance dataset serves as 
a challenging benchmark for stance detection, given the mixture of 
explicit and implicit opinions, along with varied sentiment expressions 
within the tweets. By establishing baseline results with state-of-the-art 
models and exploring methods like self-training and domain adapta-
tion, the dataset significantly advances research in NLP, particularly in 
understanding public attitudes towards health measures during a global 
crisis.

STANDER: This dataset is a notable resource designed for stance 
detection (SD) and fine-grained evidence retrieval (ER) in news articles, 
encompassing 3291 meticulously annotated pieces focused on four 
major U.S. healthcare mergers and acquisitions (M&A). The mergers in 
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question involve high-profile companies: UnitedHealth Group’s acqui-
sition of Change Healthcare (UH-CCH), Cigna’s acquisition of Express 
Scripts (CIG-ES, CVS’s purchase of Aetna (CVS-AET), and the merger be-
tween Centene and WellCare (CEN-WC). Each article within the dataset 
is labeled for stance concerning these M&A activities—categorized as 
Support, Refute, Comment, or Unrelated. In addition to stance labeling, 
the dataset is unique in its provision of detailed evidence snippets, with 
explicit start and end indices, enhancing the granularity of evidence 
retrieval (Glandt et al., 2021).

STANDER’s contributions to the field are significant due to its 
detailed annotation and alignment with existing Twitter datasets. By 
integrating authoritative news sources with user-generated content, 
STANDER addresses previous gaps in multi-genre stance detection. The 
dataset also features a balanced stance distribution naturally emerging 
from its content, reflecting the realistic complexity of public and jour-
nalistic opinion on M&A topics. Furthermore, its diachronic analysis 
of annotator disagreements provides valuable insights into how evolv-
ing public sentiment and uncertainty influence stance classification, 
establishing STANDER as a challenging and informative benchmark for 
future research in stance detection and rumor verification.

WT-WT: The Will-They-Won’t-They (WT-WT) dataset is a substan-
tial contribution to the field of stance detection, particularly within 
the context of financial rumor verification. Comprising 51,284 tweets, 
it stands as the largest publicly available stance detection dataset 
focused on user-generated content. The dataset is specifically curated 
to address the rumor verification task in mergers and acquisitions 
(M&A), making it uniquely relevant for applications in the financial 
domain. Tweets within this dataset are annotated by domain experts, 
ensuring high-quality labeling across four distinct categories: support 
(indicating belief that the merger will happen), refute (expressing doubt 
about the merger), comment (neutral discussions about the merger), 
and unrelated (tweets not related to the merger). This meticulous 
annotation process and the size of the dataset make it an invaluable 
resource for training and evaluating stance detection models (Conforti 
et al., 2020b).

One of the key innovations of the WT-WT dataset is its focus on 
the financial domain, where stance detection plays a crucial role in 
interpreting market sentiment and verifying the accuracy of circulating 
rumors. Additionally, the dataset’s multi-domain nature, encompass-
ing various sectors such as healthcare and entertainment, allows for 
robust cross-domain analysis and model adaptation. The dataset also 
highlights a significant challenge for current models, with experimental 
results showing a noticeable gap between machine and human per-
formance. This performance gap underlines the dataset’s potential to 
drive future research in improving model accuracy, exploring cross-
target and cross-domain generalization, and integrating linguistic and 
network-based features for more nuanced stance detection.

P-Stance: This dataset introduced by Li et al. is designed to address 
gaps in stance detection datasets by facilitating large-scale evaluations 
that require deeper semantic understanding. Comprising 21,574 En-
glish tweets, this dataset focuses on the political domain and includes 
three targets: Donald Trump, Joe Biden, and Bernie Sanders. Each tweet 
is annotated with a stance label towards one of these targets, with 
labels being favor or against. The primary motivation behind P-Stance 
is to provide a comprehensive benchmark for both in-target stance 
detection—where a classifier is trained and validated on the same 
target—and cross-target stance detection, where a model is adapted 
from one target to another (Li et al., 2021).

Moreover, P-Stance introduces a novel task: cross-topic stance detec-
tion, where a classifier trained on one topic must generalize to different 
topics within the same target. This setup aims to bridge the gap 
between previous datasets with limited scope and those requiring more 
nuanced semantic understanding. P-Stance enables robust evaluation 
through its extensive dataset size and the complexity of its annotations.

The dataset was collected using the Twitter streaming API with 
query hashtags to gather tweets related to the political figures in focus. 
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A rigorous preprocessing step filtered out tweets with fewer than 10 or 
more than 128 words, removed duplicates and retweets, and ensured 
all tweets were in English. The final corpus includes around 2 million 
examples after pre-processing. Annotation was conducted via Amazon 
Mechanical Turk (AMT), with tweets labeled as ‘‘Favor’’, ‘‘Against’’, 
‘‘None’’, or ‘‘I don’t know’’. Quality assurance measures included fil-
tering annotators based on performance metrics and re-annotating data 
where necessary. The dataset’s challenging nature arises from the more 
implicit references to targets and longer tweet lengths compared to 
previous datasets. This makes P-Stance a demanding benchmark for 
stance detection tasks.

MSDD: The MSDD (Multimodal Stance Detection Dataset) explores 
stance detection in multimodal conversations, combining text, gestures 
(video), and prosodic cues (audio). Unlike previous research, which 
mainly focuses on textual data, MSDD provides a rich resource for ana-
lyzing how stance is expressed across multiple modalities. The dataset 
consists of 1296 video clips from the TV shows ‘‘Friends’’ and ‘‘The 
Big Bang Theory’’, annotated with stance labels (positive, negative, 
neutral), including visual, audio, and text data. Experiments show that 
multimodal information improves stance detection, but better integra-
tion of the modalities is needed. MSDD introduces a new sub-task: 
stance detection in conversational context, paving the way for future 
research in multimodal fusion and contextual stance analysis (Hu, Liu, 
Wang, Zhang, & Lin, 2022).

CoVaxNet: This dataset is a pioneering multi-source, multi-modal, 
and multi-feature data repository designed to address COVID-19 vac-
cine hesitancy by integrating both online and offline information 
sources. The dataset encompasses a diverse array of data types includ-
ing social media posts, fact-checking reports, COVID-19 statistics, U.S. 
Census data, government responses, and local news reports. Specifi-
cally, CoVaxNet includes over 1.8 million tweets categorized by pro-
vaccine and anti-vaccine sentiments, 4263 fact-checking reports, and 
813 low-credibility sources, complemented by comprehensive offline 
datasets such as daily COVID-19 statistics, detailed census data, govern-
ment policy records, and extensive local news coverage. This dataset 
represents a significant advancement in capturing the multifaceted 
nature of vaccine-related discourse and behaviors, providing a robust 
framework for analyzing the intersection of online sentiments and 
offline realities (Jiang, Sheth, Li and Liu, 2022).

Innovatively, CoVaxNet connects online and offline data through a 
geolocation-based approach, enabling researchers to study the impact 
of online discussions on offline vaccine uptake and vice versa. This 
integration facilitates a nuanced understanding of vaccine hesitancy by 
linking social media discourse with real-world COVID-19 statistics and 
demographic information. The dataset’s design not only supports a wide 
range of research applications, including misinformation detection and 
the exploration of structural inequalities, but also provides valuable 
insights into how various factors influence vaccine acceptance and pol-
icy responses. CoVaxNet’s comprehensive nature and novel approach to 
data integration position it as a critical resource for advancing research 
and informing public health strategies.

ISD: The ISD dataset is designed for implicit stance detection, 
focusing on tweets where user stance is implied, typically through the 
use of hashtags rather than direct sentiment words. It was collected 
during the 2020 U.S. presidential election and includes about 762,255 
tweets, with 6027 labeled for either Donald Trump (DT) or Joe Biden 
(JB). Unlike other stance detection datasets, ISD requires models to 
deduce stance from context or hashtags (Huang et al., 2023).

The dataset underwent thorough preprocessing to remove irrelevant 
hashtags, duplicates, and retweets, ensuring cleaner data. Each tweet is 
annotated with a stance: ‘‘Favor’’, ‘‘Against’’, or ‘‘None’’, and contains 
hashtags that convey implicit stance information. This makes ISD a 
complex dataset, as models must interpret underlying meanings in 
hashtags to accurately determine stance.

ProCons: The ProCons dataset, is a large-scale Chinese dataset 
tailored for zero-shot stance detection tasks. It includes 245 submissions 
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on diverse topics, totaling 32,667 Chinese posts, each labeled with 
a stance of ‘‘for’’, ‘‘against’’, or ‘‘neutral’’. This dataset is specifically 
designed to test the performance of models in zero-shot scenarios, 
where models are required to detect stances without prior training on 
the specific topics present in the dataset (Wang et al., 2023).

C-STANCE: C-STANCE is the first large-scale Chinese dataset for 
zero-shot stance detection (ZSSD), consisting of 48,126 annotated text-
target pairs from Sina Weibo. It introduces two challenging subtasks: 
target-based ZSSD, where models are tested on unseen targets, and 
domain-based ZSSD, which evaluates models on targets from entirely 
new domains. The dataset includes a diverse range of targets, both 
noun-phrases and claims, allowing for multiple targets per text. C-
STANCE is over twice the size of the English ZSSD VAST dataset and 
establishes a new benchmark for stance detection in Chinese. With 
baseline models achieving only 78.5% F1 macro, C-STANCE offers a 
demanding test for model generalization and supports future research 
in zero-shot learning (Zhao, Li and Caragea, 2023).

MMVAX-STANCE: The MMVAX-STANCE dataset is an innovative 
resource for stance detection in multimedia documents, addressing 
a previously underexplored genre. It comprises 11,300 multimedia 
documents from social media, annotated to indicate stance—‘‘in favor’’, 
‘‘against’’, or ‘‘no stance’’—towards 113 distinct frames of communi-
cation, primarily related to COVID-19 vaccination. Unlike traditional 
text-only datasets, MMVAX-STANCE integrates text and image interac-
tions, capturing the nuanced interplay between modalities. Addition-
ally, 46,606 synthetic multimodal examples were generated, signifi-
cantly improving stance inference by 20% in F1-score. This dataset 
offers a robust foundation for advancing multimodal stance detec-
tion and developing computational methods for analyzing complex 
multimedia contexts (Weinzierl & Harabagiu, 2023).

MT-CSD (Multi-Turn Conversation Stance Detection): The MT-
CSD (Multi-Turn Conversation Stance Detection) dataset represents a 
significant advancement in the field of Conversational Stance Detection 
(CSD). This dataset is the largest of its kind, comprising 15,876 meticu-
lously annotated instances, offering a rich resource for stance detection 
research. It encompasses multiple targets, including ‘‘Tesla’’, ‘‘SpaceX’’, 
‘‘Donald Trump’’, ‘‘Joe Biden’’, and ‘‘Bitcoin’’, collected from Reddit, 
one of the most extensive forums for online discourse. The dataset is 
particularly notable for its depth of conversation, with 75.99% of the 
data consisting of comments that extend beyond four conversational 
turns. This depth contrasts sharply with previous datasets like CANT-
CSD, where only 6.3% of the data extends beyond three turns (Niu, 
Yang et al., 2024).

MT-CSD introduces unique challenges for stance detection due to its 
emphasis on multi-turn conversations. It features implicit target refer-
ences embedded within local sub-discussions, requiring sophisticated 
methods to capture both long- and short-range dependencies in the 
data. To tackle these challenges, the dataset is accompanied by a novel 
Global–Local Attention Network (GLAN) model, designed to address the 
complexities inherent in such deep conversational data. Additionally, 
MT-CSD’s focus on implicit stance cues, coreference resolution, and 
contextual understanding pushes the boundaries of existing stance de-
tection approaches, making it a critical resource for advancing research 
in this domain. The dataset’s rigorous construction process, including a 
two-reviewer relevance check and strict preprocessing criteria, ensures 
the high quality and relevance of the data, further enhancing its utility 
for developing robust stance detection models.

The dataset for stance detection encompasses a diverse range of 
sources, targets, and types, enabling comprehensive research and model 
development in this field.

Multi-modal Stance Detection Datasets: This set comprises five 
newly created datasets aimed at multi-modal stance detection, integrat-
ing text from Twitter with corresponding images or videos/GIFs. These 
datasets are derived from three established stance detection datasets—
Twitter Stance Election 2020, COVID-CQ, and Will-They-Won’t-They—
and cover emerging topics such as the Russo-Ukrainian Conflict and 
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the Taiwan Question. The five datasets are: Multi-modal Twitter Stance 
Election 2020 (MTSE), Multi-modal COVID-CQ (MCCQ), Multi-modal 
Will-They-Won’t-They (MWTWT), Multi-modal Russo-Ukrainian Con-
flict (MRUC), and Multi-modal Taiwan Question (MTWQ). They were 
collected via the Twitter Streaming API, ensuring each post includes 
English text paired with at least one image or video/GIF. A detailed 
annotation process, involving multiple annotators, was carried out 
to guarantee the accuracy of the stance labels. These datasets pro-
vide an important resource for advancing multi-modal stance detec-
tion, enabling models to analyze stance from both textual and visual 
sources (Liang et al., 2024).

MmMtCSD: The MmMtCSD (Multimodal Multi-turn Conversational 
Stance Detection) dataset addresses the challenges of stance detec-
tion in multi-party conversations on social media, an aspect that has 
been underexplored in previous multimodal stance detection research. 
Unlike traditional datasets focused on text-image pairs, MmMtCSD 
includes multi-turn conversational data, where each example consists 
of a target, text, and an image. The dataset contains 21,340 annotated 
examples for two main targets, ‘‘Tesla’’ and ‘‘Bitcoin’’, along with a 
‘‘Post-T’’ setting that features a wide range of targets, adding to the 
task’s complexity. One key characteristic of MmMtCSD is that 66% 
of the conversations are strongly related to the image content, high-
lighting the interplay between text and images. The dataset presents 
two primary challenges: stance information is often inferred from the 
multimodal context, and stance determination heavily relies on contex-
tual cues. The MmMtCSD dataset was used to develop the MLLM-SD 
framework, a cutting-edge approach that combines a textual encoder, 
a visual encoder, and a multimodal fusion module. Experiments on 
MmMtCSD validate the efficacy of the MLLM-SD framework, setting 
a new standard for multimodal stance detection research (Niu, Cheng 
et al., 2024).

These datasets collectively represent a broad spectrum of stance 
detection challenges, from specific topics and events to more general 
claim-based stances, sourced from both social media and news articles. 
This variety enables researchers to develop and evaluate models across 
different contexts, enhancing the robustness and generalizability of 
stance detection systems.

4. Delving into stance detection

Before delving into the various forms of stance detection, it is 
essential to distinguish between the different levels at which stance 
detection is applied. In the literature, stance classification is applied 
at two levels:

• Statement level stance detection: Here, the goal is to predict 
the stance expressed in a piece of text. This approach is common 
in NLP research, where features are extracted from text such as 
forum posts (Murakami & Raymond, 2010) or tweets (Mohammad 
et al., 2016b).

• User level stance detection: Here, the objective is to predict a 
user’s overall stance on a given topic, which can then be achieved 
by looking at multiple posts from a user, rather than a single 
post. This method can also incorporate various user attributes 
alongside the text in their posts (Aldayel & Magdy, 2019b).

Stance detection is crucial in analytical studies aimed at gauging 
public opinion on social media, especially on political and social is-
sues. These issues are often contentious, leading people to express 
conflicting opinions on distinguishable points. Topics like abortion, 
climate change, and feminism are frequently used as focal points for 
stance detection on social media (Mohammad et al., 2016b). Similarly, 
political matters, such as referenda and elections, are consistently pop-
ular domains for stance detection to explore public opinion (Fraisier, 
Cabanac, Pitarch, Besançon, & Boughanem, 2018). Stance detection, 
also known as perspective (Beigman Klebanov, Beigman, & Diermeier, 
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2010) and viewpoint (Trabelsi & Zaiane, 2018; Zhu, He, & Zhou, 2019) 
detection, involves identifying perspectives by expressing stances on a 
contentious topic (Mohammad, Sobhani, & Kiritchenko, 2017).

Stance detection involves discerning an individual’s or a post’s per-
spective regarding a specific subject (Biber & Finegan, 1988). Typically, 
this perspective is categorized as either supportive or opposing towards 
the subject in question (AlDayel & Magdy, 2021; Biber & Finegan, 1988; 
Jamadi Khiabani et al., 2020; Liu, 2022; Mohammad et al., 2016b; 
Zubiaga, 2018). However, classifying stances from social media data 
poses a challenge (Antoun, Baly, & Hajj, 2020; Zhang et al., 2020), 
primarily due to the varied and informal nature of such data. Detecting 
stances in Twitter posts presents distinct hurdles for researchers due 
to the platform’s character limit, where tweets may often have limited 
context due to this brevity, and the informal nature of tweets. These 
posts, often abbreviated and lacking formal structure, frequently devi-
ate from standard grammatical conventions (Siddiqua, Chy, & Aono, 
2019).

Considering the number of targets and whether the stance target 
appears in both the training and testing datasets, three subclasses of the 
stance detection problem can be identified: target-specific (in-target) 
stance detection (Mohammad et al., 2016b), multi-target stance de-
tection (Sobhani, 2017) and cross-target stance detection (Augenstein, 
Rocktäschel, Vlachos, & Bontcheva, 2016; Xu, Paris, Nepal, & Sparks, 
2018). These three subtasks are defined as follows:

• In-target Stance Detection: In studies focused on specific tar-
gets (in-target), the primary input involves either the text itself 
or user input, aiming to discern the stance towards predefined 
targets, such as Donald Trump in the US election or the BREXIT 
referendum (Alturayeif et al., 2023). These types of techniques 
(In-target) are mainly concerned with inferring the stance for a 
set of predefined targets, building a separate stance classification 
model for each target (Aldayel & Magdy, 2019b; Siddiqua, Chy, & 
Aono, 2018). Current approaches have demonstrated encouraging 
performance in in-target stance detection, where the same targets 
appear in both the training and test datasets (Mohammad et al., 
2016a)

• Multi-target Stance Detection: The core idea behind this type 
of stance detection is: ‘‘when a person gives their stance for one 
target, it provides information on their stance towards other re-
lated targets’’ (AlDayel & Magdy, 2021). Therefore, a stance class 
towards multiple targets is considered in this kind of methods 
for a given piece of input. Hence, learning social media users’ 
tendency regarding two or more targets for a single topic is 
achievable (Sobhani et al., 2017). Take in-favor stance for Hillary 
Clinton as a target example, it shows an against stance towards 
Trump (Darwish, Magdy, & Zanouda, 2017).

• Cross-target Stance Detection: As discussed earlier, most of 
the available stance detection approaches are concerned with in-
target (target-specific) representations that models are trained 
and tested using data specific to the same target. But in some 
cases, the target may have few or no labeled data which is a 
limitation for in-target settings; for example, one may have a 
labeled dataset with stances towards Donald Trump, which may 
want to be exploited to classify the stances in texts toward Joe 
Biden, a target for which labeled data is not available. Recently, 
a growing body of work has been emerged to explore the concept 
cross-target representations on social media as a new frontier by 
fine-tuning large pre-trained language models with a compara-
tively small portion of data, leading to distinguished performance 
enhancement for downstream NLP/NLU tasks. In other words, 
cross-target stance detection approaches are utilized to rectify 
the lack of labeled training data for new targets (Wei & Mao, 
2019). These models will be built for a destination target using 
labeled data from a different target but related one, alleviating 
required annotation of new targets due to using labeled data 
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associated with existing targets. Noteworthy is the fact that cross-
target stance detection requires human knowledge about any new 
target and its relationship with the training targets (Allaway & 
McKeown, 2020). So target generalization is the main concern 
regarding cross-target settings. We believe that cross-target stance 
detection will be a fruitful line of future work.

Before delving into cross-target approaches in the next section, we 
will first define key terminologies and methodologies commonly used 
in the stance literature.

Contrastive Learning: Contrastive learning is a method focused 
on self-supervised representation learning. It seeks to position similar 
items (positive pairs) close together in the embedding space, while 
keeping dissimilar items (negative pairs) farther apart. This technique 
enhances the representation of data by maximizing the mutual in-
formation between different augmented versions of the same sample. 
Specifically, supervised contrastive learning refines this process by 
bringing examples of the same category closer and separating those 
from different categories, thereby creating a more effective semantic 
representation of the data (Chunling et al., 2023; Zheng, Sun, Yang, & 
Xu, 2022).

Domain Adaptation: Domain Adaptation is a transfer learning 
technique aimed at bridging the gap between domains by reducing 
domain differences and improving model generalization. It is primarily 
divided into two categories: feature-level adaptation and instance-level 
adaptation. Feature-level adaptation focuses on aligning feature dis-
tributions across domains by creating a domain-agnostic latent space, 
while instance-level adaptation adjusts the weights of source instances 
to prioritize those more similar to the target domain. These approaches 
collectively enhance the model’s ability to perform well across varied 
contexts and datasets (Chunling et al., 2023; Deng, Panl, & Clavel, 
2022).

Data Augmentation: Data Augmentation involves modifying and 
enhancing original text data through various techniques to address 
data scarcity and enrich the dataset. Common methods include Easy 
Data Augmentation (EDA), which involves random insertion, deletion, 
swapping, and synonym replacement, and back translation, where text 
is translated to another language and then translated back to create 
variations. With advancements in generative adversarial networks and 
pretrained models, new generative-based augmentation methods have 
also emerged, further expanding the techniques available for enriching 
text data (Wang, Zhang, & Wang, 2024).

Adversarial Training: Adversarial Training involves using adver-
sarial loss methods, inspired by generative adversarial networks
(GANs), to enhance domain adaptation. This approach typically in-
cludes techniques like the Domain Adversarial Neural Network
(DANN), which employs a gradient reversal layer to obscure the domain 
discriminator and help the feature extractor learn domain-invariant 
representations. Another method, Adversarial Discriminative Domain 
Adaptation (ADDA), combines a discriminative approach with GAN loss 
and separate weights to reduce domain discrepancies. These methods 
are particularly effective for tasks like zero-shot stance detection, where 
they help align features across different domains (Chunling et al., 
2023).

Keyphrase Generation/Extraction: Keyphrase Generation/
Extraction is the process of identifying keyphrases that accurately 
capture the essence or main topics of a given document, such as a 
research paper or news article. In the context of stance detection, this 
technique can be applied to generate keyphrases that are specifically 
related to the target of interest within the text. A widely used ap-
proach is the One2Seq model, an encoder–decoder framework that 
generates keyphrases sequentially in an auto-regressive fashion. This 
framework often utilizes pre-trained models like BART, which can be 
fine-tuned on datasets such as OpenKP, KP Times, and FullTextKP for 
generating relevant keyphrases. Despite its potential, the application 
of keyphrase generation specifically for target-related tasks in stance 
detection remains underexplored (Li, Garg and Caragea, 2023).
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Meta Learning: Meta Learning aims to improve a model’s ability to 
adapt by learning from multiple tasks, rather than focusing solely on 
individual tasks. This approach, inspired by transfer learning, teaches 
models to ‘‘learn how to learn’’, which is especially beneficial for sce-
narios with limited data or new tasks. Model-Agnostic Meta-Learning 
(MAML) is a popular technique that achieves this by optimizing model 
parameters in two stages: first, updating the model using a specific 
task’s data, and second, refining the model’s initial parameters based on 
overall performance across tasks. MAML has shown promise in various 
natural language processing tasks and is used here to train a model for 
stance detection, enhancing its capacity to quickly adjust to new and 
different targets (Wang et al., 2024).

Attention Mechanism: The attention mechanism in stance detec-
tion is a powerful tool that enhances the model’s ability to focus 
on relevant parts of the input text, thereby improving the accuracy 
of stance classification. This mechanism allows the model to weigh 
different parts of the input differently, giving more importance to the 
words or phrases that are most indicative of the stance (Alturayeif et al., 
2023; Xu et al., 2018).

5. Approaches to cross-target stance detection

Cross-target stance detection has witnessed significant evolution 
and innovation over the last decade and particularly from 2016 to 
2024, with researchers exploring various methods to improve model 
performance across diverse datasets and scenarios. In what follows 
we discuss existing methods to cross-target stance detection, which 
we group into five major types of methods: (1) Statistics-based meth-
ods, (2) Fine-tuning-based methods, (3) Prompt-tuning-based meth-
ods, (4) Knowledge-enhanced methods, and (5) Knowledge-enhanced 
Prompt-tuning methods (see Table  2).

5.1. Statistics-based methods

Statistics-based methods in cross-target stance detection primarily 
utilize statistical and machine learning techniques to understand and 
classify stances in textual data. These approaches often involve models 
like LSTMs, variational networks, or attention mechanisms that extract 
features from text and encode dependencies between the content and 
the target stance. They rely on traditional and statistical machine 
learning methods to analyze relationships between targets and the 
stances expressed in text.

In 2016, Augenstein et al. introduced BiCond, a bidirectional con-
ditional LSTM-based method designed to address stance detection, 
specifically the task of classifying the attitude expressed in text towards 
a target. The method tackles the challenging scenario where the target 
may not always be mentioned in the text, and there is no training 
data available for the test targets. BiCond builds a representation of 
the tweet that is dependent on the target, outperforming independent 
tweet and target encoding. The method was evaluated on the SemEval 
2016 Task 6 Twitter Stance Detection corpus, achieving second-best 
performance without additional training data for the test target, and 
state-of-the-art results when augmented with weak supervision. The 
study utilized several datasets, including TaskA training and develop-
ment data for targets like Hillary Clinton and Atheism, an unlabeled 
corpus of Donald Trump tweets, and automatically labeled data for 
weak supervision. BiCond significantly improved F1 scores in stance 
detection for unseen targets, achieving 0.4901 F1 in the unseen target 
setting and 0.5803 F1 with weak supervision, demonstrating the effec-
tiveness of the approach in scenarios where labeled data for each target 
is unavailable (Augenstein et al., 2016).

In 2018, Xu et al. proposed CrossNet, a model designed for cross-
target stance classification. CrossNet identifies user stances on various 
targets by leveraging shared knowledge across related targets. The 
model uses a self-attention mechanism to detect and utilize domain-
specific aspects from a source target, enhancing generalization to 
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Table 2
Comparison of models across different techniques grouped by method.
 Method Model Contrastive 

learning
Domain 
adaptation

Data 
augmentation

Adversarial 
training

Keyphrase gener-
ation/Extraction

Graph-based Meta learning Attention 
mechanism

 

 

Statistics-based

BiCond  
 CrossNet ✓  
 VTN ✓ ✓  
 TGA-Net ✓  
 TPDG ✓ ✓  
 TOAD ✓ ✓ ✓  
 

Fine-tuning

DTCL ✓  
 GDA-CL ✓ ✓ ✓  
 UTDA ✓  
 JointCL ✓  
 PT-HCL ✓  
 SSCL ✓  
 CT.AAD ✓ ✓  
 TSE ✓  
 STANCE-C3 ✓ ✓  
 FEGCL ✓ ✓  
 MPCL ✓  
 MCLDA ✓ ✓ ✓ ✓  
 MSFR ✓  
 GLAN ✓ ✓  
 

Prompt-based

PET  
 TAPD  
 FECL ✓ ✓ ✓  
 CCSD ✓ ✓  
 TTS ✓ ✓  
 Stance Reasoner ✓  
 MTFF ✓ ✓ ✓ ✓  
 MPTT ✓ ✓  
 EZSD-CP ✓  
 DS-ESD ✓  
 EDDA ✓  
 

Knowledge-enhanced

SEKT ✓ ✓ ✓  
 CKE-Net ✓ ✓  
 BS-RGCN ✓ ✓  
 WS-BERT ✓ ✓  
 TarBK-BERT ✓  
 NPS4SD  
 ANEK ✓ ✓ ✓ ✓ ✓  
 CNet-Ad ✓ ✓ ✓  
 
Knowledge-enhanced 
prompt-based

INJECT ✓  
 COLA ✓  
 LKI-BART ✓ ✓  
 KAI ✓ ✓  
 PSDCOT ✓  
a destination target. CrossNet is structured into four layers: Embed-
ding, Context Encoding, Aspect Attention, and Prediction. Compared to 
BiCond, CrossNet incorporates a self-attention mechanism that cap-
tures and generalizes domain-specific information, thus improving 
performance in cross-target stance classification tasks. The study eval-
uated CrossNet using the SemEval-2016 Task 6 Twitter stance detec-
tion dataset and a collection of tweets about an Australian mining 
project. The SemEval dataset included five targets—Climate Change,
Feminist Movement, Hillary Clinton, Legalization of Abortion, and Donald 
Trump—organized into three domains: Women’s Rights, American Poli-
tics, and Environment. In cross-target experiments, CrossNet leveraged 
shared information across these topics to improve stance detection 
accuracy. For instance, it used knowledge from stances on Climate 
Change to better predict stances on Hillary Clinton or the Legalization 
of Abortion. CrossNet demonstrated superior performance over BiCond, 
with an average F1-score improvement of 6.6%. This significant per-
formance boost highlighted CrossNet’s ability to generalize knowledge 
from one target to another, supported by both quantitative metrics 
and qualitative visualizations of the model’s attention mechanisms  (Xu 
et al., 2018).

In 2019, Wei et al. introduced the VTN (Variational Topic Network) 
model for cross-target stance detection. The VTN model addresses the 
challenge of limited labeled data for new targets by leveraging trans-
ferable topics between a source and a destination target. The core idea 
10
is to use shared latent topics as transferable knowledge, enabling the 
model to generalize across different targets. This is achieved through 
neural variational inference, which extracts topic knowledge from un-
labeled data, and adversarial training, which encourages the model to 
learn target-invariant representations. Compared to previous models 
like CrossNet, which primarily use self-attention for domain-specific 
feature extraction, VTN explicitly models and transfers shared topics 
between targets, leading to improved cross-target stance detection. 
The VTN model was evaluated using datasets from the SemEval-2016 
Task 6 Twitter stance detection challenge, which includes targets such 
as Climate Change, Feminist Movement, Hillary Clinton, Legalization 
of Abortion, and Donald Trump. In the cross-target experiments, the 
model demonstrated its ability to utilize shared latent topics, such 
as ‘‘equality’’ in the case of Feminist Movement and Legalization of 
Abortion, to improve stance classification on the destination target. 
This approach effectively bridges the gap between targets by focusing 
on common topics discussed within different contexts. Experimental 
results showed that VTN outperformed state-of-the-art methods, achiev-
ing superior cross-target stance detection accuracy by leveraging both 
labeled and unlabeled data to capture and transfer relevant topic 
knowledge (Wei & Mao, 2019).

In 2020, the TGA-Net (Topic-Grouped Attention Network) was 
introduced for zero-shot stance detection, addressing the challenge of 
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stance classification across a wide range of topics without any train-
ing examples. The paper first presents the VAST dataset, specifically 
designed to encompass diverse topics with varying lexical expressions, 
crucial for evaluating models’ ability to generalize. Unlike existing 
datasets with limited topics and expressions, VAST includes a broad 
spectrum of themes such as politics, education, and public health, 
facilitating a more comprehensive assessment of zero-shot and few-shot 
stance detection models. TGA-Net itself leverages generalized topic rep-
resentations derived through unsupervised contextualized clustering, 
allowing the model to implicitly capture relationships between topics 
without human-defined rules. This approach enhances performance on 
challenging linguistic phenomena like sarcasm and reduces reliance 
on sentiment cues, which often lead to classification errors in stance 
detection tasks. TGA-Net’s architecture comprises a contextual condi-
tional encoding layer followed by topic-grouped attention using learned 
generalized topic representations. By embedding documents and topics 
jointly using BERT and computing generalized topic centroids through 
clustering, the model effectively encodes topic relationships without 
explicit supervision. This enables TGA-Net to outperform existing meth-
ods like BiCond and CrossNet, particularly in scenarios where there 
are few or no labeled examples for new topics. Experimental results 
on the VAST dataset demonstrate TGA-Net’s superiority, achieving 
statistically significant improvements in macro-average F1 scores across 
both zero-shot and few-shot stance detection tasks, thereby validating 
its efficacy in handling a wide array of topics with varied lexical 
expressions (Allaway & McKeown, 2020).

In another line of work, researchers introduced the TPDG frame-
work, designed to tackle the challenge of stance detection across mul-
tiple targets, including those not seen during training. The key in-
novation of TPDG lies in constructing heterogeneous target-adaptive 
pragmatics dependency graphs for each sentence relative to a given 
target. These graphs integrate syntactic dependency and pragmatics 
information derived from annotated training data and word-level anal-
yses across various targets. Specifically, TPDG employs two types of 
graphs: in-target graphs, which capture pragmatics dependencies spe-
cific to each target, and cross-target graphs, which enhance the adapt-
ability of words across all targets (Liang et al., 2021). The integration 
of these heterogeneous graphs is achieved through a graph-aware 
model utilizing interactive Graph Convolutional Network (GCN) blocks. 
These blocks allow the model to dynamically adjust and learn from 
both target-specific and target-independent contextual graph repre-
sentations. This approach improves the model’s ability to understand 
and adapt stance expressions for unseen targets by leveraging knowl-
edge from the constructed graphs. Experimental results on benchmark 
datasets, SemEval-2016 Task 6 and Wt-wt, show that the TPDG model 
outperforms existing state-of-the-art methods in cross-target stance de-
tection. For SemEval-2016, evaluation was performed using the mean 
value of the Macro F1-score for the ‘favor’ and ‘against’ classes, as well 
as the average of both micro-averaged and macro-averaged F1 scores 
to address target imbalance. For the Wt-wt dataset, the Macro F1-score 
for all labels was used to assess performance across all targets. These 
results highlight the effectiveness of incorporating external knowledge, 
including both target-specific and target-independent pragmatics de-
pendencies, into the model. The TPDG framework not only enhances 
stance detection accuracy but also improves interpretability, align-
ing with knowledge-enhanced methods in natural language processing 
research.

Allaway et al. introduced the TOAD (TOpic ADversarial network) 
model for zero-shot stance detection, which employs adversarial learn-
ing to generate topic-invariant representations, enabling it to generalize 
across various topics on Twitter. The model uses a bidirectional condi-
tional encoding (BiCond) architecture to create topic-specific document 
representations, which are then transformed through a linear layer to 
become topic-invariant. An adversary, trained simultaneously with the 
stance classifier, helps ensure that these representations do not encode 
topic-specific information, thereby improving the model’s ability to 
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handle unseen topics. The TOAD model incorporates a stance classifier 
and a topic discriminator, where the former predicts stance labels and 
the latter attempts to identify the topic from the transformed repre-
sentations. The adversarial training process minimizes the classifier’s 
error while maximizing the adversary’s error, effectively promoting the 
creation of topic-invariant features (Allaway, Srikanth, & McKeown, 
2021). The dataset used in this study is the SemEval2016 Task 6 
(SemT6), which includes six topics: Donald Trump (DT), Hillary Clinton 
(HC), Feminist Movement (FM), Legalization of Abortion (LA), Climate 
Change (CC), and Atheism (A). The TOAD model is trained on five of 
these topics and tested on the remaining one in a cross-target setting, 
where each topic in turn is used as the zero-shot test topic. The model 
was also benchmarked on two additional topics not previously used 
in zero-shot settings, namely Atheism and Climate Change. The results 
show that TOAD achieves state-of-the-art performance on the majority 
of topics, including DT and FM, and performs comparably to BERT 
on others, while being significantly more computationally efficient. 
The analysis indicates that TOAD’s adversarial learning approach is 
effective in generating robust, topic-invariant representations, leading 
to superior performance in zero-shot stance detection scenarios. They 
reported 𝐹avg as the evaluation metric, the average of the F1 scores on 
the ‘pro’ and ‘con’ stances.

Critique and Limitations: Despite their contributions, statistics-
based methods face several challenges. For instance, the generalization 
capability of models like TGA-Net is often limited when dealing with 
highly diverse topics. Additionally, computational demands are sig-
nificant in models like TPDG due to the complexity of integrating 
syntax and pragmatics. Furthermore, TOAD’s topic representations, 
while effective in zero-shot settings, can oversimplify the intricate 
relationships between topics and targets. This evolution of statistics-
based methods underscores their role as a stepping stone in cross-target 
stance detection, providing critical insights while revealing the need for 
more sophisticated and scalable approaches.

5.2. Fine-tuning based methods

Fine-tuning-based methods involve adapting pre-trained language 
models (like BERT or GPT) to specific stance detection tasks by further 
training them on domain-specific datasets. This approach leverages 
the extensive pre-existing knowledge in these models, refining them 
to recognize and classify stances by using labeled data related to the 
target topics. It is particularly effective in scenarios where the model 
must generalize across different but related targets by fine-tuning with 
minimal data.

BertEmb uses BERT embeddings with a multi-layer perceptron 
(MLP) for stance detection (SD) and evidence retrieval (ER), effectively 
capturing contextual information from complex, unstructured texts 
like news articles. It highlights the power of transfer learning and 
pre-trained models for nuanced stance detection, especially in news 
reports, addressing gaps left by previous research focused mainly on 
user-generated content. The model is tested on the STANDER dataset, 
containing 3291 expert-annotated news articles about US healthcare 
mergers. It is evaluated with macro-averaged precision, recall, and 
F1 for SD, and precision and recall for ER. BertEmb achieves the 
highest scores for SD in cross-target and zero-shot settings, though it 
still falls short of human performance, suggesting a need for further 
improvements in multi-task learning and domain adaptation (Conforti 
et al., 2020a; Reimers & Gurevych, 2019).

Building on the concept of few-shot learning, DTCL (Discrete Topic 
Contrastive Learning) was proposed in 2022 for zero-shot and few-shot 
stance detection (ZFSD). This model utilizes BERT  to encode document-
target pairs and introduces a discrete latent topic variable to model 
relationships between seen and unseen targets in a latent space. By em-
ploying supervised contrastive learning, DTCL learns target-invariant 
features, overcoming the limitations of previous models that relied on 
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large, unlabeled datasets or poorly modeled target relationships. Eval-
uated on the VAST  dataset, DTCL outperforms baselines like TGA-Net, 
which suffers from training-representation mismatches, and CKE-Net, 
which depends on external knowledge. Without such dependencies, 
DTCL demonstrates superior performance in handling challenging as-
pects of stance detection, such as neutral labels, sarcasm, and multiple 
targets (Liu, Lin, Fu, Liu, & Wang, 2022).

The GDA-CL model tackles zero-shot stance detection (ZSSD) by 
generating high-quality synthetic training data for unseen targets using 
a combination of generative adversarial networks (GANs) and hybrid 
contrastive learning. Unlike methods relying on external knowledge, 
GDA-CL creates training samples in the same embedding space as real 
ones, improving knowledge transfer and stance detection performance. 
It leverages GPT-2 as the generator, RoBERTa as the discriminator, 
and BERT as the classifier within a GAN framework, with an MLP for 
contrastive learning. Evaluated on VAST and SemT6 datasets, GDA-
CL achieves state-of-the-art results across most topics by using data 
augmentation and robust contrastive learning (Li & Yuan, 2022). In 
the cross-target setting, GDA-CL consistently outperforms baselines 
like TOAD, BERT-GCN, and CrossNet by generating high-quality data 
for unseen targets. Although it excels with shorter, coherent texts, 
the model struggles with longer texts, showing less improvement on 
the VAST dataset. This highlights its limitation in capturing complex 
semantics in longer texts, suggesting an area for future refinement.

Deng et al. introduced UTDA (Unified Target-aware Domain Adap-
tation) for cross-target stance detection using transformer-based lan-
guage models (TLMs) to adapt to new targets on social media. Unlike 
traditional methods relying on manually selected target pairs, UTDA 
uses unsupervised feature disentanglement and instance weighting to 
automatically identify and adapt to target relations. Evaluated on Se-
mEval2016-T6 and COVID-19-STANCE datasets under a leave-one-out 
setting, UTDA outperforms baselines like TOAD, DANN, and MOE, 
improving over vanilla BERT by 7.2% and surpassing MOE by 8.9% 
in average F1-score, particularly excelling with targets having no pre-
defined relations (Deng et al., 2022). The study validates UTDA’s 
effectiveness by leveraging TLMs and enhancing model adaptability 
without predefined target pairs. Its strong performance on both datasets 
shows its ability to handle dynamic and diverse targets, offering a 
scalable solution for adapting to emerging topics and sentiments on 
social media.

The JointCL model introduces Joint Contrastive Learning for zero-
shot stance detection (ZSSD), focusing on detecting stances for unseen 
targets (Liang, Zhu et al., 2022). It integrates two strategies: stance 
contrastive learning, which enhances stance feature generalization by 
clustering similar instances within stance classes, and target-aware 
prototypical graph contrastive learning, which uses prototypical graphs 
to model relationships between known and unseen targets, transfer-
ring stance information across related targets. Evaluated on the VAST, 
SEM16, and WT-WT datasets, JointCL outperforms baselines like BERT 
and SEKT in cross-target scenarios, such as training on one target and 
testing on a related unseen target (e.g., HC to DT, FM to LA) on the 
SEM16 dataset. This demonstrates JointCL’s effectiveness in adapting to 
unseen targets by leveraging context-aware and target-aware perspec-
tives, achieving state-of-the-art performance in ZSSD where traditional 
supervised models falter due to a lack of labeled data.

The PT-HCL framework enhances zero-shot stance detection (ZSSD) 
by distinguishing between target-invariant and target-specific stance 
features (Liang, Chen et al., 2022). It uses a two-fold approach: first, 
self-supervised learning with a pretext task to augment training data 
with masked instances based on target-related words, and second, 
a hierarchical contrastive learning framework that integrates stance 
labels and feature types. In cross-target stance detection, PT-HCL shows 
significant improvements over baselines like BiCond and CrossNet, 
particularly in scenarios such as ‘‘HC→ DT’’ and ‘‘DT→ HC’’. The model 
achieves higher accuracy and F1 scores, demonstrating its robust ability 
to generalize stance detection across unseen targets and advance the 
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state-of-the-art in ZSSD. This makes PT-HCL a promising approach 
for detecting stances towards previously unseen targets in real-world 
applications.

The SSCL (Sentiment-Stance Contrastive Learning) model addresses 
zero-shot stance detection (ZSSD) by focusing on cross-target stance 
detection. It utilizes contrastive learning to extract target-invariant 
features from texts, analyzing both sentiment and stance dimensions. 
The model groups texts accordingly and employs a supervised con-
trastive learning approach to capture transferable features, which are 
then combined with target-specific semantic information to improve 
stance detection for unseen targets. Evaluated on three benchmark 
datasets, including SEM16, SSCL achieved state-of-the-art performance 
in cross-target stance detection. The evaluation used the mean of 
micro-averaged and macro-averaged F1 scores for Favor and Against, 
addressing data imbalance issues (Zou et al., 2022). However, SSCL 
has some limitations. It focuses on extracting features from sentiment 
and stance dimensions, potentially neglecting finer details like syntactic 
structure and perspective that could enhance stance detection. Addi-
tionally, its reliance on labeled sentiment and stance data limits the 
use of large unlabeled datasets during testing, which may impact its 
generalization capabilities.

Pavan et al. introduced the CT.AAD model for cross-target stance 
classification, adapting BERT with adversarial learning and knowledge 
distillation to enhance stance detection on unseen targets. Using the 
UstanceBR r1 dataset, which includes Portuguese tweets on six topics 
like political figures and COVID-19, CT.AAD was benchmarked against 
single-target models and general LSTM-BERT approaches. Results show 
CT.AAD performs better than other cross-target methods but remains 
behind single-target models, especially in polarized contexts. Evalua-
tion metrics focus on F1 scores, accuracy, and loss (Pavan & Paraboni, 
2022).

In 2023, the Multi-Perspective Contrastive Learning Framework 
emerged for cross-target stance detection (CTSD) and zero-shot stance 
detection (ZSSD). Leveraging both labeled and unlabeled data with 
BERT base, the model was evaluated on the SemEval-2016 dataset. It 
achieved comparable results to strong baselines like SKET and TAPD 
in tasks such as FM→ LA and HC→ DT, though its performance may 
be limited by the number of targets in CTSD. This framework improves 
stance detection by integrating unlabeled texts, addressing the issues 
of limited labeled data and inaccuracies in external knowledge (Jiang, 
Gao, Shen, & Cheng, 2023).

Li et al. introduced the TSE (Target-Stance Extraction) task for 
in-target and cross-target stance detection, focusing on automatically 
extracting target and stance pairs from text, especially when targets 
are implicit. The approach uses a two-stage framework: target iden-
tification and stance detection. Target identification includes Target 
Classification with classifiers like BiLSTM and BERT, and Target Gener-
ation with a fine-tuned BART model to generate keyphrases mapped to 
predefined targets. For stance detection, a multi-task learning approach 
is employed, with target prediction as an auxiliary task to enhance 
focus on target-related features. The model is evaluated on a combined 
dataset from four stance datasets and a new zero-shot dataset with 
unseen targets such as ‘‘Creationism’’ and ‘‘MeToo Movement’’. Metrics 
include F1 score and accuracy for target-stance extraction, and micro- 
and macro-F1 for target identification and stance detection. TGA-Net, 
utilizing topic-grouped attention, outperforms other models in zero-
shot settings, demonstrating the TSE framework’s effectiveness for 
applications with undefined target sets (Li, Garg et al., 2023).

Kim et al. introduced STANCE-C3, a method for stance detection 
that combines domain counterfactual generation with contrastive learn-
ing. The model features a T5-based domain counterfactual generator, 
which adapts source domain samples to target domains, and a BERT-
based stance classifier that incorporates these counterfactuals. The 
classifier uses contrastive learning to distinguish stance types by mini-
mizing distances between positive pairs and maximizing those between 
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negative pairs, enhancing generalization across targets (Kim, Mosal-
lanezhad, Cheng, Mancenido, & Liu, 2023). Evaluated on the CoVaxNet 
dataset (COVID-19 vaccination) and the COVID-19-Stance dataset (var-
ied stance targets), STANCE-C3 showed strong performance in few-shot 
and zero-shot scenarios. The model’s effectiveness was measured us-
ing classification accuracy, AUC, and contrastive loss, demonstrating 
improvements in stance detection across single-domain, cross-domain, 
and cross-target settings.

Zhao et al. introduced FEGCL (Feature Enhancement via Graph 
Contrastive Learning) for stance detection on unseen targets, addressing 
both zero-shot and cross-target scenarios. FEGCL uses a dual-view 
graph construction to capture target-invariant features from syntactic 
and semantic perspectives. It combines unsupervised graph contrastive 
learning with an interactive GCN to enhance stance detection ca-
pabilities for unseen targets while maintaining global semantic con-
sistency (Zhao, Zou et al., 2023). Evaluated on the VAST dataset 
(zero-shot) and the WT-WT dataset (cross-target), FEGCL shows su-
perior performance, with a higher F1-Score than baseline methods. It 
demonstrates effective feature extraction and stance detection, achiev-
ing robust results in both zero-shot and cross-target scenarios, and 
excels in generalizing to new, unseen targets through graph-based 
contrastive learning.

Zhao et al. focused on zero-shot stance detection (ZSSD) with a 
specific emphasis on cross-target stance detection using the Chinese C-
STANCE dataset. The paper tackles two subtasks: target-based ZSSD, 
testing models on unseen targets, and domain-based ZSSD, evaluating 
models on targets from new domains. The dataset includes 48,126 
annotated text-target pairs from Sina Weibo, covering diverse contro-
versial topics (Zhao, Li et al., 2023). The evaluation metric used is 
the macro-averaged F1 score. The best-performing model, RoBERTa, 
achieved an F1 score of 78.5% on target-based ZSSD, highlighting 
room for improvement, particularly in handling varied target types. 
The study establishes baseline results with several deep learning mod-
els, including BERT, RoBERTa, and XLNet, within a zero-shot learn-
ing framework where models encounter test set targets only during 
evaluation.

MPCL or Mult-CL (Multi-Perspective Contrastive Learning) ad-
dresses zero-shot stance detection (ZSSD) by leveraging both labeled 
and unlabeled data to enhance target representations. The framework 
includes BERT for text encoding, target-oriented contrastive learning 
(Target-CL) for refining target representations, and label-oriented con-
trastive learning (Label-CL) for stance features across different labels. 
This approach improves upon previous methods by handling noisy 
schema-linking and lacking target-specific information. MPCL achieves 
state-of-the-art results on datasets such as SemEval-2016, WT-WT, and 
VAST, showing notable improvements over baselines in SemEval-2016 
and WT-WT, and comparable performance on VAST (Jiang et al., 
2023). In cross-target stance detection (CTSD), MPCL competes well 
against models like SKET and TPDG and performs better than PT-
HCL on most target pairs, except FM→ LA and DT→ HC. Evaluation 
on SemEval-2016 shows MPCL’s stability across cross-target tasks, 
though it struggles with fewer training targets, affecting its overall 
effectiveness. The model’s robust performance is attributed to its ability 
to balance target-specific and independent features through contrastive 
learning.

CT-TN (Cross-Target Text-Net), proposed by Jamadi Khiabani et al. 
combines multimodal embeddings from RoBERTa for text and network-
based embeddings from social interactions using PecanPy, a variant of 
Node2Vec. The model processes text and network features in parallel 
and uses a majority voting mechanism for stance prediction. CT-TN 
outperforms models like TGA-Net, CrossNet, and RoBERTa by incorpo-
rating social network interactions, achieving 11% to 21% improvement 
in macro-averaged F1 scores over baseline models (Khiabani & Zubiaga, 
2023). In cross-target stance detection with the P-Stance dataset, CT-
TN excels, particularly with 300+ examples per target, showing up 
to 21% higher F1 scores compared to other models. It performs well 
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even with contrasting ideologies, such as Trump and Sanders, and 
benefits from network features, enhancing accuracy across various 
source–destination pairs. However, performance diminishes with fewer 
examples, but the inclusion of network features still makes CT-TN a 
robust choice for diverse and cross-target stance detection tasks.

Tacchi et al. present the Ego Network Model (ENM) and the Signed 
Ego Network Model (SENM) for cross-target stance detection (called
Stance+Ego model), leveraging social network data to enhance stance 
prediction. The methodology involves transforming both textual and 
social network data into vector embeddings using node2vec for graph-
based features and RoBERTa for text-based predictions. The ENM and 
SENM are evaluated against the CT-TN baseline and RoBERTa on the 
P-Stance dataset, which includes 21,574 tweets about political figures, 
using a few-shot learning approach. Specifically, the experiments use 
1000 source-target data points with varying numbers of destination-
target texts, ranging from 100 to 400 shots. The results reveal that 
while the ENM and SENM slightly lag behind the CT-TN model, they 
perform comparably with less data, demonstrating their efficacy in 
stance detection. Notably, the outer circles of the ENM, which capture 
weaker but more numerous social ties, prove to be more informative 
for stance prediction than the inner circles. This suggests that less 
intimate connections have a significant impact on stance detection, and 
the ENM offers a viable alternative to more data-intensive methods. It 
is important to note that they used Macro F1 score as the evaluation 
metric (Tacchi, Khiabani, Zubiaga, Boldrini, & Passarella, 2024).

MCLDA (Meta-Contrastive Learning for Data Augmentation), pro-
posed by Wang et al. addresses zero-shot stance detection (ZSSD) 
by mitigating data scarcity and improving model generalization. It 
employs two main strategies: generating target keyphrases using BART 
fine-tuned on KPTimes, and applying meta-contrastive learning by 
framing stance detection as a text entailment task, trained with MAML 
and contrastive learning (Wang et al., 2024). MCLDA improves over 
previous methods by generating keyphrases for texts lacking explicit 
targets, common in short social media posts, and stabilizes perfor-
mance across targets through meta-learning. It was evaluated on VAST, 
SemEval-2016 (SEM16), and WT-WT datasets, using metrics like Macro 
F1 and average F1 scores for stance detection. The model shows supe-
rior performance in cross-target scenarios, particularly with target pairs 
like FM-LA and DT-HC, due to its ability to leverage target correlations. 
In zero-shot stance detection, MCLDA competes well against models 
such as BiCond and CrossNet, and surpasses BERT-GCN, especially in 
scenarios without external knowledge. Its cross-target performance is 
notably strong, benefiting from learned correlations between known 
and unknown targets.

The MSFR (Multi-aspect Semantic Feature Representation) model 
enhances zero-shot stance detection by using a hierarchical contrastive 
learning framework with two components: inter-aspect contrastive 
learning and intra-aspect contrastive learning. Inter-aspect learning 
aligns semantic features across target domains, crucial for knowledge 
transfer, while intra-aspect learning captures fine-grained attribute-
level features within aspects, improving generalization. This approach 
addresses the limitations of traditional methods that rely on coarse 
global features (Zhao, Tian et al., 2024). Evaluated on the VAST 
and WT-WT datasets, MSFR consistently outperforms baseline models, 
including BiLSTM, adversarial learning, and graph neural networks. It 
shows superior performance compared to the TOAD model, particularly 
in unbalanced data scenarios, and significantly surpasses PT-HCL in the 
WT-WT dataset. The model’s fine-grained feature extraction and BERT-
based representation contribute to its effectiveness. An ablation study 
confirms the importance of both contrastive learning components, high-
lighting MSFR’s robust performance and detailed approach to feature 
representation and knowledge transfer in zero-shot stance detection.

The GLAN model incorporates three key components to enhance 
stance detection: a global attention layer, a local convolutional layer, 
and a structural layer. The global attention layer uses BERT’s pre-
trained embeddings to capture long-range dependencies and integrate 
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contextually relevant information from distant parts of a conversation. 
The local convolutional layer applies CNNs to detect short-range nu-
ances and subtleties within smaller dialog segments. The structural 
layer employs Graph Convolutional Networks (GCNs) to analyze the 
relationships between comments, incorporating structural information 
from the conversation history. Evaluated using the Favg metric on 
the MT-CSD dataset, which focuses on conversational stance detection 
across various topics and depths, GLAN demonstrates superior perfor-
mance compared to baseline models like BERT, GCN, and CNN-based 
approaches. It excels in domain-specific scenarios, outperforming mod-
els such as CrossNet, KEPrompt, BERT, and TTS when the training and 
testing targets are within the same domain. However, in cross-domain 
experiments, the TTS model shows better performance, indicating its 
effectiveness in handling topic similarities across different domains, 
while GLAN proves more robust in domain-specific tasks (Niu, Yang 
et al., 2024).

By leveraging advanced techniques such as contrastive learning, 
adversarial learning, and domain adaptation, fine-tuning-based models 
have proven to be powerful tools for stance detection, particularly 
in the context of cross-target and zero-shot learning scenarios. These 
models demonstrate promising results across diverse datasets and tasks, 
highlighting their potential for real-world applications in fields ranging 
from social media monitoring to news analysis.

Critique and Limitations: While fine-tuning-based methods have 
demonstrated strong performance, they face challenges such as limited 
generalization to diverse domains, dependence on labeled data for 
effective adaptation, and difficulty in handling nuanced and highly 
subjective stances. This evolution of fine-tuning approaches highlights 
their strengths in leveraging pre-trained models for stance detection, 
while also emphasizing the need for more robust techniques to address 
these limitations.

5.3. Prompt-tuning based methods

Prompt-tuning has been applied to various natural language pro-
cessing tasks such as text classification, natural language understand-
ing, and sentiment analysis. This approach uses task-specific prompts 
or templates to guide language models in understanding and classifying 
text, eliciting relevant information from pre-trained models with min-
imal additional training data. By framing tasks as fill-in-the-blank or 
similar cloze tasks, prompt-tuning allows models to generalize stances 
across various targets, leveraging the inherent linguistic patterns recog-
nized by the language models. A key component of prompt-tuning is the 
verbalizer, which significantly influences its effectiveness. Verbalizers 
can be classified into two types: (1) human-designed verbalizers, which 
rely on personal expertise and often lack comprehensive coverage, as 
seen in Schick et al.’s manual definition of label words for text classi-
fication; and (2) automatic verbalizers, which use automatic searching 
methods to identify more effective verbalizers (Huang et al., 2023).

In 2020, Schick et al. introduced PET, a pattern-exploiting train-
ing method that revolutionized language model training by utilizing 
cloze-style phrases to assign soft labels. This semi-supervised approach 
significantly enhances the understanding and performance of language 
models in tasks such as stance detection. PET has been successfully 
applied across various datasets, including Yelp Reviews and AG’s News, 
demonstrating its effectiveness in improving model robustness and 
accuracy even with limited labeled data (Schick & Schütze, 2021). 
Specifically, PET excels in cross-target stance detection by leveraging 
task-specific prompts that encapsulate nuanced linguistic cues. By inte-
grating natural language patterns into training, PET enables pretrained 
language models to generalize more effectively across different targets 
within and across domains. Experimental results consistently show 
PET outperforming traditional fine-tuning methods, highlighting its 
capability to enhance adaptability and performance in challenging low-
resource settings. This approach not only advances the field of natural 
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language processing but also paves the way for more sophisticated AI 
applications that require nuanced understanding of textual data.

The TAPD (Target-Aware Prompt Distillation) model addresses few-
shot learning challenges in stance detection by leveraging pre-trained 
language models (PLMs) and prompt-based fine-tuning. Unlike tra-
ditional methods with fixed prompts, TAPD adapts prompts to be 
target-aware, using a novel verbalizer that maps stance labels to con-
tinuous vectors for improved contextual understanding. This approach 
distills information from multiple prompts to handle diverse expres-
sions across targets. Evaluated on SemEval-2016 Task 6 Sub-task A and 
the UKP dataset, TAPD shows superior performance in both full-data 
and few-shot scenarios. Specifically, in cross-target stance detection on 
the SemEval-2016 dataset, TAPD outperforms methods like SKET and 
TPDG across various target pairs, such as Hillary Clinton vs. Donald 
Trump and Legalization of Abortion vs. Feminist Movement. TAPD’s 
effective use of prompt-based fine-tuning and multi-prompt distillation 
demonstrates its potential for adaptive stance detection in diverse 
topics and contexts (Jiang, Gao, Shen and Cheng, 2022).

Zhao et al. introduced FECL (Feature Enhanced Zero-shot Stance 
Detection Model via Contrastive Learning) to address zero-shot stance 
detection challenges. FECL captures target-invariant features through 
syntactic patterns and combines them with target-specific semantic 
features. It uses data augmentation by masking topic words and em-
ploys contrastive learning to extract transferable syntactic features. 
Evaluations on datasets such as SEM16 and COVID-19 demonstrate that 
FECL outperforms baseline models in zero-shot, few-shot, and cross-
target scenarios, with performance measured by the Macro-averaged F1 
score. An ablation study on the COVID-19 dataset shows that random 
masking and removing the contrastive learning loss significantly reduce 
performance, highlighting their importance. Additional analysis with 
alignment and uniformity metrics, and T-SNE visualizations, confirms 
that contrastive learning enhances the model’s generalization capabil-
ities. FECL achieves improved alignment and uniformity, facilitating 
better performance in zero-shot and cross-target tasks, and shows po-
tential for broader application in stance detection across different 
domains (Zhao et al., 2022).

Zhang et al. proposed a novel approach named CCSD (Cross-lingual 
Cross-target Stance Detection) using a dual knowledge distillation 
framework. This methodology includes a cross-target teacher model 
that learns and generalizes target category representations. The pro-
posed Cross-lingual Cross-target Stance Detection (CCSD) method uti-
lizes a dual knowledge distillation framework. It includes a cross-
lingual teacher model, prompt-tuned with cross-lingual templates, and 
a cross-target teacher model that focuses on learning fine-grained target 
knowledge. This dual approach facilitates the transfer of language-
related and target-oriented knowledge from a high-resource source lan-
guage to a low-resource target language (Zhang, Yang and Mao, 2023). 
To tackle the issues of target inconsistency, the cross-target teacher 
model aggregates semantically correlated target representations to 
extract category information. This is refined using category-oriented 
contrastive learning, enhancing the model’s ability to generalize to 
unseen targets. The cross-lingual teacher serves as the initial encoder, 
helping to mitigate language differences during the distillation process. 
The combined output from both teachers provides pseudo-labels for 
the student model, facilitating knowledge transfer despite varying 
target distributions and the absence of labeled data. The methodol-
ogy is validated on multilingual datasets with diverse target settings, 
demonstrating superior performance compared to existing methods, 
particularly in handling unlabeled data and unseen targets. However, 
challenges remain in achieving optimal performance when the nature 
of target expressions varies significantly across datasets.

The TTS (Target-based Teacher–Student) framework addresses zero-
shot stance detection by expanding the training set with targets gen-
erated from an unlabeled dataset. A keyphrase generation model is 
used to create additional targets, and a detailed analysis reveals that 
78% of these targets are relevant to their texts. The teacher model, 
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which leverages large language models like BERT, effectively assigns 
stance labels, achieving 81% consistency in the augmented data. This 
setup enhances stance detection performance without requiring ex-
tensive human-annotated datasets (Li, Zhao and Caragea, 2023). For 
the open-world zero-shot stance detection (ZSSD) task, the TTS frame-
work introduces a novel approach by formulating stance detection 
as a Natural Language Inference (NLI) task. A synthetic training set 
is generated, and the BART model, pre-trained on the MNLI dataset, 
predicts stance labels by applying the prompt template ‘‘I am in favor 
of [target] !’’. This reformation allows the task to be viewed through 
NLI’s entailment, contradiction, or neutrality labels. The method shows 
significant improvements, with an 8.9% increase in macro-averaged 
F1 scores over previous models on VAST dataset, demonstrating its 
effectiveness in scenarios lacking annotated targets and labels. This 
approach, which includes prompt tuning techniques, not only improves 
zero-shot stance detection but also sets a new benchmark for future 
research in target-based data augmentation for stance detection tasks.

The Stance Reasoner architecture leverages large pre-trained lan-
guage models (PLMs) like LLaMA and Vicuna for its zero-shot stance 
detection tasks. These models are selected for their strong in-context 
learning abilities and are used in combination with the chain-of-
thought (CoT) approach to generate intermediate reasoning steps that 
support stance predictions. Stance Reasoner also employs self-
consistency, where multiple outputs are generated and a majority vote 
is taken to improve prediction accuracy and robustness (Taranukhin, 
Shwartz, & Milios, 2024).

In the zero-shot setting, Stance Reasoner surpasses several base-
line models, including fully supervised methods such as BERT-GCN, 
and knowledge-infused models like BERT-based models fine-tuned for 
stance detection. Stance Reasoner consistently outperforms these base-
lines on datasets like SemEval-2016 Task 6a, WT-WT, and the COVID-
19 Stance dataset, achieving better generalization across unseen targets 
by incorporating reasoning and background knowledge rather than 
relying solely on training data patterns.

MTFF (Multi-perspective Transferable Feature Fusion) is designed 
for zero-shot stance detection, enhancing adaptability to new con-
texts. It incorporates target-keyword masking for data augmentation, 
instance-wise contrastive learning (instance-CL) for refined
meta-feature identification, and an attention mechanism for effective 
feature fusion. Using large language models like BERT and RoBERTa 
for initial feature extraction, MTFF employs pattern-based approaches 
and a multi-head attention mechanism to improve stance classification 
accuracy. Evaluations on datasets such as VAST, ProCon, WT-WT, 
and P-Stance show that MTFF surpasses baseline models, including 
RoBERTa and BERT, demonstrating superior accuracy and robustness 
in zero-shot tasks (Zhao, Zou et al., 2024). MTFF excels in zero-shot sce-
narios by generalizing to new domains through unsupervised clustering 
and instance-wise contrastive learning. Performance metrics, including 
accuracy and F1 scores, highlight significant improvements over tra-
ditional methods that rely on global text features. Results from VAST 
and ProCon confirm MTFF’s effectiveness in transferring knowledge 
and detecting stances across diverse contexts, outperforming previous 
models like GPT-3 and conventional frameworks.

The MPPT (Multi-Perspective Prompt-Tuning) model for Cross-
Target Stance Detection (CTSD) utilizes large language models (LLMs) 
within its components to enhance performance. Specifically, the model 
incorporates BERT-base uncased as the underlying language model 
for its prompt-tuning framework (MultiPLN). Additionally, GPT-3.5-
0301 is employed in the two-stage instruct-based chain-of-thought 
method (TsCoT) to generate natural language explanations (NLEs) 
from multiple perspectives. These LLMs are integral to MPPT, enabling 
it to effectively handle the complexities of informal text structures 
and implicit expressions, thus facilitating superior knowledge trans-
fer across domains compared to other methods (Ding, Chen et al., 
2024). The MPPT model was tested on the SEM16 and VAST datasets, 
focusing on cross-target and zero-shot scenarios. Evaluated using the 
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Macro F1 score, the results showed that MPPT outperformed state-
of-the-art models such as PT-HCL and KE-PROMPT, with an average 
improvement of 13% in CTSD tasks. Moreover, MPPT outperforms 
the knowledge-enhanced model TarBK, highlighting that leveraging 
analysis perspectives to bridge knowledge gaps is more effective than 
depending on structural background knowledge. In the cross-target 
experiments on SEM16, MPPT demonstrated significant performance 
gains across all tasks, effectively transferring domain-invariant knowl-
edge. Moreover, in zero-shot stance detection (ZSSD) on the VAST 
dataset, MPPT showed strong generalization capabilities, surpassing 
other models in all zero-shot conditions.

EZSD-CP is designed to tackle both zero-shot and cross-target stance 
detection by incorporating a gated multilayer perceptron (gMLP) and 
integrating prompt learning with contrastive learning. The gMLP mod-
ule enhances the connection between prompts and instances by dynam-
ically adjusting the influence of prompts based on semantic context, 
which is crucial for detecting stance across different targets. In this 
method, BERT and RoBERTa are used as the core pretrained language 
models (PLMs) for generating word embeddings and semantic represen-
tations. Unlike traditional models that rely on external knowledge (as 
seen in models like CKE-Net) or struggle with intrinsic data, EZSD-CP 
effectively utilizes these advanced strategies to improve generalization 
and accuracy in cross-target scenarios, where the relationship between 
known and unknown targets is leveraged for better performance (Yao, 
Yang, & Wei, 2024). The performance of EZSD-CP was evaluated on the 
VAST and SemEval-2016 (SEM16) datasets. For cross-target stance de-
tection, EZSD-CP was evaluated on the SemEval-2016 (SEM16) dataset, 
where the model’s ability to generalize across different targets was 
rigorously tested. Metrics such as Macro F1 and accuracy were used to 
assess the model’s performance. EZSD-CP outperformed baseline mod-
els, demonstrating superior cross-target generalization by effectively 
capturing the relationships between various stance targets. The model 
achieved notable results, surpassing the state-of-the-art JointCL model 
in cross-target settings, indicating that the integration of gMLP and 
contrastive learning significantly enhances its ability to adapt to new 
and unseen targets.

The work by Motyka and Piasecki presented an overview of some 
state-of-the-art methods in target-phrase zero-shot stance detection, 
emphasizing the challenges and advancements in this field. The model 
architecture features a novel modification of prompt-based approaches 
for training encoder transformers, achieving results comparable to 
large language models (LLMs) but with significantly fewer parameters. 
Experimental results demonstrated that their prompting-based methods 
outperformed traditional fine-tuning approaches, particularly in zero-
shot settings. Special attention is given to evaluating the effectiveness 
of various prompts, revealing that more complex, non-annotation-task-
based prompts tend to yield better performance, especially for con-
troversial topics (Motyka & Piasecki, 2024). The experiments utilized 
the SemEval-2016 Task 6 and VAST datasets, with metrics like the 
average F1 score for favor and against classes, and the average F1 
score for all three classes including zero-shot parts. Results showed 
that the prompting approach with RoBERTa-large achieved state-of-
the-art performance on these datasets. While LLMs like GPT-3.5-turbo 
and FLAN-UL2 demonstrated strong zero-shot capabilities, especially 
on SemEval-2016, their performance was variable depending on the 
prompts used. In contrast, the proposed prompt-based methods consis-
tently outperformed or matched LLMs in efficiency and effectiveness, 
highlighting the importance of high-quality, well-designed prompts. 
The study also underscored the need for better quality training data 
and the challenges posed by true neutral samples in datasets like VAST.

The promot-based DS-ESD framework developed by Ding et al. ad-
dresses cross-target stance detection using a novel distantly supervised 
method. Its architecture incorporates an instruction-based Chain-of-
Thought (CoT) method with a very large language model (VLLM) such 
as GPT-3.5, a generative network that maps inputs to explanations, 
and a BERT-based stance classifier trained on these explanations. This 
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design minimizes the need for extensive manually labeled data and 
enables effective stance detection through distant supervision. Addi-
tionally, DS-ESD features an adaptive training mechanism, including 
curriculum learning and label rectification, which enhances the model’s 
performance in handling noisy labels. Experimental results on datasets 
like SemEval-2016 Task 6, COVID-19, and VAST revealed that DS-ESD 
significantly outperformed baseline methods, with an average improve-
ment of 12.85% in F1 score over top statistical methods and 12.05% 
over fine-tuning methods. The model also demonstrated robustness in 
zero-shot scenarios, proving its effectiveness in stance detection even 
with limited annotated data (Ding, Dai et al., 2024).

The proposed EDDA (Encoder–Decoder Data Augmentation) frame-
work proposed by Ding et al. addresses the limitations of existing 
data augmentation techniques in Zero-Shot Stance Detection (ZSSD). 
EDDA employs a unique methodology where an encoder uses large 
language models (LLMs) with chain-of-thought prompting to gener-
ate target-specific if-then rationales, thus creating logical relationships 
between the text and the targets. This helps to maintain semantic 
coherence while the decoder generates new samples through a semantic 
correlation word replacement strategy, increasing syntactic diversity. 
Additionally, EDDA incorporates a rationale-enhanced network (REN) 
to effectively utilize the augmented data, bolstering the model’s ability 
to generalize to unseen targets (Ding, Dong et al., 2024). The method-
ology was validated on SEM16 dataset for cross-target scenario. For 
cross-target evaluation, the framework was tested on the SemEval-
2016 Task 6 (SEM16) dataset. The evaluation metric employed was the 
Macro-averaged F1 score across the ‘‘Favor’’ and ‘‘Against’’ classes. This 
metric was used to measure the framework’s effectiveness in handling 
unseen targets, demonstrating that EDDA significantly outperforms tra-
ditional methods by producing more generalized and diverse samples. 
The results demonstrated that EDDA-generated data has greater diver-
sity and relevance, leading to improved performance across various 
ZSSD models, including BiLSTM, CrossNet, TGA-Net, Bert-Joint, and 
JointCL. This highlights EDDA’s robustness in handling new, unseen 
topics or entities, making it a potent tool for stance detection tasks.

The COLA (Collaborative rOle-infused LLM-based Agents) frame-
work, built on the GPT-3.5 Turbo model from OpenAI, leverages its 
high performance and cost-effectiveness through the OpenAI API. The 
architecture includes a multidimensional text analysis stage with three 
expert agents—Linguistic Expert, Domain Specialist, and Social Media 
Veteran—that analyze text from various perspectives. This is followed 
by a reasoning-enhanced debating stage where a Judger agent synthe-
sizes the insights from the experts to determine the stance. Prompts 
guide these roles, ensuring systematic analysis and reproducibility. 
COLA’s design improves upon existing methods by offering robust zero-
shot stance detection without additional model training (Lan, Gao, Jin, 
& Li, 2024). COLA’s effectiveness is evaluated using Favg (average F1 
score for Favor and Against) for the SEM16 and P-Stance datasets, and 
Macro-F1 score for the VAST dataset. It outperforms both zero-shot 
and in-target stance detection methods, showing high accuracy and 
effectiveness across these datasets. The framework also matches state-
of-the-art baselines in related text classification tasks, demonstrating 
its versatility and practical application. Additionally, COLA provides 
clear and rational explanations for its decisions, enhancing its usability 
and trustworthiness. Future work will focus on incorporating real-time 
knowledge updates to improve analysis of current events and extend its 
capabilities in web and social media text analysis.

In summary, prompt-tuning-based methods represent a diverse set 
of techniques with varying strengths and weaknesses. While approaches 
like PET and TAPD excel in few-shot and cross-target settings, methods 
like FECL and CCSD offer strong performance in zero-shot scenarios, 
albeit with challenges in data consistency and complexity. As the field 
continues to evolve, a critical balance between model complexity, in-
terpretability, and performance will be essential to developing scalable 
and efficient stance detection systems.
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Critique and Limitations: Despite their strengths, prompt-tuning 
methods face challenges such as limited verbalizer coverage, which 
constrains their ability to map complex stances to model outputs. 
Furthermore, these methods struggle to adapt effectively in dynamic 
domains with rapidly changing language patterns or topics. Overall, 
prompt-tuning approaches represent a promising direction in stance de-
tection by effectively utilizing pre-trained language models. However, 
addressing their limitations requires innovative solutions for improving 
adaptability and expanding verbalizer capabilities.

5.4. Knowledge-enhanced methods

Knowledge-enhanced methods integrate external knowledge
sources, such as semantic lexicons, commonsense knowledge, or
domain-specific databases, into the stance detection process. These 
approaches use knowledge graphs or databases to provide context and 
enhance the understanding of the text, enabling the model to make 
more informed decisions about stances. This is particularly useful in 
zero-shot or few-shot learning scenarios, where labeled data for specific 
targets may be scarce or unavailable.

The SEKT (Semantic-Emotion Knowledge Transferring) model pro-
posed by Zhang et al. addresses cross-target stance detection by leverag-
ing external semantic and emotion lexicons to enhance representation 
learning. SEKT constructs a semantic-emotion heterogeneous graph 
from these lexicons, utilizing graph convolutional networks (GCN) to 
capture multi-hop semantic connections between words and emotion 
tags. This graph-based approach enriches the model’s understanding of 
stance by integrating domain-specific knowledge, facilitating effective 
knowledge transfer across different targets. Moreover, SEKT extends the 
bidirectional LSTM (BiLSTM) with a novel knowledge-aware memory 
unit (KAMU), enabling the model to integrate external knowledge 
seamlessly into the stance classification process (Zhang et al., 2020). 
The researchers evaluated SEKT on a comprehensive dataset derived 
from SemEval-2016 Task 6, a benchmark for stance detection in social 
media texts. Their experiments demonstrated SEKT’s superior perfor-
mance over state-of-the-art methods, including traditional BiLSTM and 
BERT models, as well as other graph-based approaches like Cross-
Net. SEKT consistently outperformed these baselines across multiple 
cross-target stance detection tasks, showcasing its effectiveness in han-
dling short, informal texts and implicit stance expressions. This success 
underscores SEKT’s role in advancing stance detection research, par-
ticularly in scenarios where labeled data is scarce or when targeting 
diverse subjects across different domains.

In another line of work called CKE-Net, the authors address the 
challenging problem of zero-shot and few-shot stance detection, focus-
ing on scenarios where very limited or no annotated training data is 
available for new topics. Traditional data-driven approaches struggle 
in such settings due to their dependency on large annotated datasets. 
To overcome these limitations, the authors propose a novel approach 
that integrates commonsense relational knowledge from ConceptNet 
into the stance detection process. They leverage a relational subgraph 
extracted from ConceptNet, capturing semantic relationships between 
concepts to facilitate reasoning about stances across diverse topics. This 
approach not only enhances the model’s generalization capabilities but 
also mitigates the need for extensive annotated data (Liu, Lin, Tan, 
& Wang, 2021). The methodology involves encoding textual inputs 
using BERT and enriching them with relational knowledge via a Graph 
Convolution Network (GCN), specifically CompGCN, tailored for rela-
tional graphs. This integration enables the model to effectively combine 
structural and semantic information from the knowledge graph with 
contextual information from the text. Experimental results on their 
newly introduced dataset, VAried Stance Topics (VAST), demonstrate 
significant performance improvements over state-of-the-art methods. 
Their model achieves superior performance across various evaluation 
metrics, showcasing its effectiveness in handling both zero-shot and 
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few-shot stance detection tasks. This underscores the critical role of ex-
ternal commonsense relational knowledge in enhancing the robustness 
and applicability of stance detection models in challenging, data-scarce 
scenarios. The macro average of F1-score is used as the evaluation 
metric in the CKE-Net model.

The BS-RGCN model proposed by Luo et al. advances stance detec-
tion by integrating sentiment and commonsense knowledge through an 
innovative architecture. It features a graph autoencoder with relational 
graph convolutional network (RGCN) encoders and a DisMult decoder 
to capture commonsense knowledge from ConceptNet. Additionally, 
it incorporates sentiment-aware BERT (SentiBERT) to enhance stance 
classification. Unlike the CKE-Net model, which achieves state-of-the-
art zero-shot stance detection using BERT and ConceptNet but is limited 
to two-hop knowledge relations, BS-RGCN addresses this limitation 
by incorporating sentiment and utilizing a broader scope of common-
sense knowledge. This comprehensive approach allows BS-RGCN to 
generalize more effectively across various types of related knowledge, 
improving performance in both zero-shot and few-shot scenarios. The 
model’s macro F1 scores of 72.6% and 71.3% on the VAST dataset high-
light its superior capabilities. BS-RGCN shows enhanced accuracy for 
stance classification, particularly with sentiment and stance pairs such 
as (Pos, Pro) and (Neg, Con). Its increased coverage of commonsense 
knowledge also correlates with better performance, demonstrating its 
direct benefit for stance detection. Case studies reveal that BS-RGCN 
effectively handles nuanced cases with implicit topic references and 
complex sentiment cues, proving its robustness in integrating sentiment 
and commonsense knowledge. This approach significantly advances the 
capabilities of zero-shot and few-shot stance detection compared to 
CKE-Net and other models (Luo, Liu, Shi, Li, & Zhang, 2022).

In their 2022 paper, He et al. introduced WS-BERT (Wikipedia 
Stance Detection BERT), a model designed to improve stance detection 
by incorporating background knowledge from Wikipedia. Traditional 
models often fail to incorporate the necessary background knowl-
edge, resulting in suboptimal performance. WS-BERT addresses this 
by infusing Wikipedia knowledge into the stance encoding process. 
The model is evaluated on three benchmark datasets covering so-
cial media discussions and online debates, demonstrating significant 
performance improvements over state-of-the-art methods in target-
specific stance detection, cross-target stance detection, and zero/few-
shot stance detection (He, Mokhberian, & Lerman, 2022). WS-BERT 
leverages different BERT-based models depending on the nature of 
the text. For formal documents, WS-BERT-Single uses a single BERT 
model pretrained on Wikipedia to collectively encode the document, 
target, and Wikipedia knowledge. For informal, noisy texts from so-
cial media, WS-BERT-Dual employs two separate language models: 
BERTweet or COVID-Twitter-BERT for the document-target pair and 
vanilla BERT for Wikipedia knowledge. This dual encoding minimizes 
domain shifts between training examples and the pretraining corpora 
of the language models. Extensive experiments on P-Stance, COVID-19-
Stance, and VAST datasets reveal that WS-BERT significantly enhances 
stance detection accuracy, especially in scenarios where background 
knowledge is crucial for understanding the target, such as cross-target 
and zero/few-shot stance detection tasks.

The TarBK-BERT proposed method for Zero-Shot Stance Detec-
tion (ZSSD) integrates targeted background knowledge extracted from 
Wikipedia to enhance the model’s ability to generalize stance detection 
across unseen targets (Zhu et al., 2022). By crawling and filtering 
relevant knowledge using keyword matching, the approach enriches 
BERT-based models with target-specific information, facilitating more 
accurate stance predictions for new targets not seen during training. 
Specifically, the method leverages pre-trained BERT embeddings fed 
with context enriched by targeted background knowledge, referred 
to as TarBK-BERT. This novel approach addresses the ZSSD task by 
bridging the gap between known and unknown targets through en-
riched representations, thereby improving overall model performance. 
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For evaluating cross-target stance detection, experiments were con-
ducted on the Sem16 dataset, featuring predefined targets such as 
Donald Trump, Hillary Clinton, and others. Results demonstrate that 
TarBK-BERT consistently outperforms baseline models in cross-target 
scenarios. Specifically, when tested on related but unseen targets, 
TarBK-BERT achieves significant improvements in stance detection ac-
curacy compared to other state-of-the-art methods. This highlights the 
effectiveness of integrating targeted background knowledge in enhanc-
ing the model’s ability to generalize across different targets, under-
scoring its applicability and robustness in real-world natural language 
processing tasks.

The NPS4SD (Neural Production System for Stance Detection) is 
an interpretable end-to-end deep learning model designed to classify 
the stance of opinionated text towards a specified target. It consists 
of two main components: a pretrained model for learning text rep-
resentations and a Variable Binding Network (VBN) that integrates 
knowledge rules with text entities. The VBN dynamically selects rule-
entity patterns, allowing the model to apply relevant rules based on 
the context. NPS4SD enhances stance detection through three types 
of knowledge rules: (1) Target-specific knowledge, which captures 
information relevant to the given target, (2) Background knowledge 
from external sources like Wikipedia to provide additional context, 
and (3) Syntax-related knowledge, utilizing dependency parsing to 
improve understanding of the text’s structure. By combining these 
rules with deep learning, NPS4SD addresses key limitations in stance 
detection, particularly in terms of interpretability and the integration of 
human-like reasoning into model predictions (Zhang, Ding et al., 2023). 
The model was evaluated on three real-world datasets: SemEval-2016, 
P-stance, and VAST, under various setups including in-domain, cross-
target, and zero-shot scenarios. Using the F1-score, a standard metric 
for classification, results indicate that NPS4SD outperforms state-of-the-
art baseline methods, especially in cross-target and zero-shot settings. 
For cross-target stance detection, NPS4SD improved the F1 score by an 
average of 9.0% over methods like TPDG and by 8.6% compared to 
RoBERTa, demonstrating its robustness with unseen targets. In zero-
shot detection, leveraging background knowledge rules was crucial, 
leading to significant performance gains. NPS4SD not only improves 
stance detection accuracy but also enhances model interpretability, 
offering a more transparent approach compared to traditional deep 
neural networks.

The ANEK (adversarial network with external knowledge) model 
addresses the challenge of zero-shot stance detection by incorporat-
ing adversarial learning, sentiment information, and common sense 
knowledge. The model leverages pre-trained models like BERT and 
SentiBERT to create robust contextual and sentiment representations. 
A key feature is the use of a graph autoencoder trained on subgraphs 
from ConceptNet to integrate common sense knowledge into the stance 
detection process. ANEK also utilizes contrastive learning to enhance 
the quality of these representations, enabling better generalization to 
unseen targets. This approach significantly improves upon existing 
methods by addressing limitations like the transfer of target-invariant 
information and understanding implicit viewpoints in text (Chunling 
et al., 2023). ANEK was tested on three datasets: SEM16, WT-WT, 
and COVID-19. In the cross-target stance detection experiments on the 
SEM16 dataset, ANEK demonstrated superior performance, particularly 
when compared to models like BERT and TOAD. The cross-target 
setting proved more effective than the standard zero-shot setting, sug-
gesting that pre-existing knowledge of relationships between targets 
helps the model learn more reliable target-invariant representations. 
This highlights the challenges of zero-shot stance detection and the ef-
fectiveness of incorporating external knowledge to enhance the model’s 
understanding and generalization abilities.

CNet-Ad leverages a combination of BERT, a Relational Graph 
Convolution Network (R-GCN), and a feature separation adversarial 
network to tackle zero-shot stance detection (ZSSD). BERT encodes 
text and target embeddings, while the R-GCN captures commonsense 
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knowledge from ConceptNet to address the lack of target context. The 
feature separation adversarial network distinguishes between target-
specific and target-invariant features, enhancing the model’s ability to 
generalize to unseen targets and maintain performance. By combining 
commonsense knowledge with adversarial learning, CNet-Ad improves 
performance by ensuring that both types of features—target-specific 
and target-invariant—are effectively utilized. This approach addresses 
the limitations of existing methods that either fail to adequately handle 
unseen targets or rely heavily on noisy external knowledge (Zhang, 
Li, Zhu and Li, 2024). In the cross-target setting, CNet-Ad was tested 
on the SemEval-2016 dataset, where it demonstrated significant im-
provements over baseline methods such as JointCL and SEKT. Also, 
CNet-Ad generally outperforms the MPCL model, except in two target 
pairs (LA→ FM and HC→ DT) where MPCL achieves better results 
among all the models. Despite the challenges of handling only two types 
of targets, CNet-Ad achieved superior results by effectively leveraging 
both target-specific and target-invariant features. This performance 
underscores the model’s robustness and ability to extend its capabilities 
to new, unseen targets in cross-target scenarios.

Critique and Limitations: While knowledge-enhanced methods 
provide a richer understanding of stance-related text, they face notable 
challenges. Static knowledge bases often struggle to adapt to rapidly 
evolving topics or domains, resulting in outdated or irrelevant infor-
mation being incorporated into the model. Additionally, these methods 
are prone to overfitting, especially when the incorporated knowledge 
is noisy or overly specific, limiting their generalizability to diverse 
datasets.

5.5. Knowledge-enhanced prompt-tuning based methods

Knowledge-enhanced prompt-tuning methods aim to improve stance
detection by integrating external knowledge into prompt-based frame-
works. These approaches combine the contextual adaptability of
prompt-tuning with the enriched representations provided by knowl-
edge sources, making them particularly effective for complex and 
zero-shot stance detection tasks.

KEprompt is a stance detection model that uses a prompt-tuning 
framework combined with background knowledge to enhance perfor-
mance. The model architecture leverages pretrained language models 
such as BERT-base, BERT-large, RoBERTa-base, and RoBERTa-large. Its 
innovation lies in the automatic verbalizer method, which reduces bias 
by selecting appropriate label words, and the integration of external 
knowledge from the SecticNet lexicon and ConceptGraph. The authors 
also proposed a new dataset named ISD for stance detection tasks. 
Experiments were conducted on the SEM16, P-stance, ISD, and VAST 
datasets, using micro-average and macro-average F1-scores for evalua-
tion (Huang et al., 2023). Results showed that KEprompt significantly 
outperforms baseline methods in both in-domain and cross-target se-
tups. In cross-target stance detection, KEprompt improves F1avg by 
8.4% and F1 m by 8.0% compared to the statistical method TPDG, 
and surpasses fine-tuning methods by 14.6% to 11.4% on average. In 
zero-shot stance detection, KEprompt demonstrates its effectiveness, 
achieving superior performance on the VAST dataset compared to all 
baselines. Ablation studies confirm that the prompt-tuning framework 
and automatic verbalizer are crucial for the model’s success, with 
the integration of SenticNet enhancing performance through better 
semantic coverage. These findings underscore KEprompt’s robustness 
and effectiveness across various stance detection tasks, highlighting its 
significant contribution to the field.

Expanding on this, INJECT model proposed by Beck et al. employs 
a dual-encoder architecture to enhance stance detection by integrating 
contextual information. The model uses BERT as the foundational 
language model for encoding both the input text and the additional con-
text. BERT processes the text and context separately, facilitating their 
interaction through cross-attention mechanisms. Additionally, INJECT 
leverages T0pp to generate relevant context via prompts, enhancing 
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its ability to handle various stance detection scenarios. It also incor-
porates ConceptNet and CauseNet for sourcing contextual knowledge, 
with ConceptNet providing commonsense relationships and CauseNet 
offering causal connections relevant to stance targets (Beck, Waldis, 
& Gurevych, 2023). In the cross-target setting, INJECT demonstrates 
improved performance by generalizing better to unseen targets com-
pared to existing methods. The model’s robustness stems from its 
ability to integrate context flexibly, using multiple sources like Con-
ceptNet, CauseNet, and T0pp, which is beneficial for diverse datasets 
and noisy contexts. This approach addresses limitations of traditional 
stance detection models, which often rely too heavily on target-specific 
vocabulary or struggle with cross-target generalization. Overall, IN-
JECT shows superior performance across a diverse range of datasets, 
outperforming many state-of-the-art models by effectively leveraging 
contextual information.

Zhao Zhang et al. introduced LKI-BART, a novel approach for stance 
detection that excels in zero-shot and cross-target scenarios by leverag-
ing LLM-driven knowledge. The method integrates LLM-driven contex-
tual knowledge into a BART-based generation framework, enhancing 
its ability to interpret and predict stances towards unseen targets. 
Additionally, a prototypical contrastive loss is used to align stance rep-
resentations with semantic labels, improving accuracy and robustness. 
Unlike traditional methods that focus mainly on target-related back-
ground knowledge, LKI-BART incorporates LLM-driven knowledge to 
explicitly capture the relationship between text and target, enhancing 
contextual understanding. Zhang, Li, Zhang and Xu (2024). LKI-BART 
was evaluated on the VAST and P-Stance datasets, showing signifi-
cant performance improvements over existing methods. In cross-target 
stance detection, LKI-BART demonstrated superior results, with up to 
15 F1 points higher than previous models. The approach’s effectiveness 
in both zero-shot and cross-target settings underscores its advanced 
capability in handling complex stance detection tasks.

In the paper by Bowen Zhang et al. the proposed KAI (knowledge-
augmented interpretable network) model integrates two main com-
ponents: LLM-KE and Bi-KGNPS. The LLM-KE component uses chain-
of-thought (CoT) prompting with large language models (LLMs) to 
generate target-relevant analytical perspectives and rationales. Specif-
ically, it first asks the LLM to enumerate distinct perspectives on the 
target and then generates rationales for these perspectives. This process 
involves prompt-based elicitation of knowledge, enabling the model 
to utilize target-independent transferable knowledge. The Bi-KGNPS 
component consists of two branches. The left branch processes the 
input text and target, using perspective features to enhance text repre-
sentations through a multihop attention mechanism. The right branch 
processes the perspectives and rationales to construct variable bind-
ings for selecting relevant perspectives and learning content-oriented 
features. This dual-branch setup facilitates dynamic interaction and 
knowledge-variable binding, refining the prediction process (Zhang, 
Ding et al., 2024). For evaluation, the KAI model uses accuracy and F1-
score average (𝐹avg) as metrics. It achieves state-of-the-art performance 
in cross-target stance detection on SEM16 dataset, demonstrating sig-
nificant improvements over baseline models. The model performs well 
in both zero-shot and few-shot settings, benefiting from its ability to 
leverage target-independent knowledge and domain-specific insights 
effectively.

The PSDCOT model addresses significant challenges in stance de-
tection through its innovative use of prompt-based methods com-
bined with advanced knowledge extraction techniques. The model 
integrates two main components: knowledge extraction via ChatGPT, 
which employs a chain-of-thought (COT) approach to generate de-
tailed background knowledge, and knowledge fusion through a multi-
prompt learning network (M-PLN) using RoBERTa. In the prompt-based 
method, specific prompts are designed to elicit relevant knowledge 
from the language model, such as ‘‘The attitude towards <Target>
is [MASK]’’, which allows the model to infer stance by filling in the 
mask with appropriate stance labels. This framework helps mitigate the 
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Table 3
Performance comparison of cross-target stance detection methods across various datasets. Metrics reported is F1-Score (F1). St: statistics-based, Fn:Fine-tuning, Pr:Prompt-tuning, 
Kn:Knowledge-enhanced, Kn-Pr:Knowledge-enhanced Prompt-tuning.
 Method Year SemEval-2016-F1 VAST-F1 P-Stance-F1 WT-WT F1 CoVaxNet-F1 COVID-19-STANCE F1 MT-CSD F1 
 BiCond (St) 2016 42.01 – – – – – –  
 CrossNet (St) 2018 45.8 – – – – – –  
 VTN (St) 2019 44.75 – – – – – –  
 TGA Net (St) 2020 – 66.6 – – – – –  
 TPDG (St) 2021 55.2 – – – – – –  
 TOAD (St) 2021 46.3 – – – – – –  
 BertEmb (Fn) 2020 47.6 – – – – – –  
 DTCL (Fn) 2022 – 70.7 – – – – –  
 GDA-CL (Fn) 2022 49.01 70.4 – – – – –  
 UTDA (Fn) 2022 48.1 – – – – 50.1 –  
 JointCL (Fn) 2022 50.4 72.3 – 73.45 – – –  
 PT-HCL (Fn) 2022 50.9 71.6 – 73.8 – – –  
 SSCL (Fn) 2022 57.3 – – – – – –  
 CT.AAD (Fn) 2022 – – – – – – –  
 STANCE-C3 (Fn) 2023 – – – – 79.0 – –  
 FEGCL (Fn) 2023 – 71.6 – 75.2 – – –  
 MPCL (Fn) 2023 56.6 – – – – – –  
 CT-TN (Fn) 2023 – – 77.0 – – – –  
 Stance+Ego (Fn) 2024 – – 75.0 – – – –  
 MCLDA (Fn) 2024 56.0 – – – – – –  
 MSFR (Fn) 2024 – 71.7 – 75.2 – – –  
 GLAN (Fn) 2024 – – – – – – 35.6  
 TAPD (Pr) 2022 53.4 – – – – – –  
 FECL (Pr) 2022 57.4 – – – – – –  
 TTS (Pr) 2023 – 79.0 – – – – –  
 Stance Reasoner (Pr) 2024 53.3 – – 41.4 – 55.8 –  
 MTFF (Pr) 2024 – 72.5 58.9 76.6 – – –  
 MPPT (Pr) 2024 68.8 74.4 – – – – –  
 EZSD-CP (Pr) 2024 – 73.6 – – – – –  
 DS-ESD (Pr) 2023 67.8 – – – – – –  
 EDDA (Pr) 2024 66.9 – – – – – –  
 SEKT (kn) 2020 44.2 – – – – – –  
 CKE-Net (kn) 2021 – 70.2 – – – – –  
 BS-RGCN (kn) 2022 – 72.6 68.3 – – – –  
 WS-BERT (kn) 2022 – 75.3 – – – – –  
 TarBK-BERT (kn) 2022 55.2 – – – – – –  
 NPS4SD (kn) 2023 61.7 – – – – – –  
 ANEK (kn) 2023 56.0 – – – – – –  
 CNet-Ad (kn) 2024 55.6 – – – – – –  
 KEpromp (kn-Pr) 2023 64.7 – – – – – –  
 INJECT (kn-Pr) 2023 57.8 – – – – – –  
 LKI-BART (kn-Pr) 2024 – 79.6 81.9 – – – –  
 KAI (kn-Pr) 2024 73.9 – – – – – –  
 PSDCOT (kn-Pr) 2024 70.1 – – – – – –  
limitations of traditional fine-tuning approaches, which often struggle 
with the gap between pre-training and task-specific requirements (Ding, 
Fu et al., 2024). For cross-target stance detection, PSDCOT significantly 
outperforms other methods, including TPDG (a statistical method) and 
RoBERTa-FT (a fine-tuning based method). Evaluations on datasets 
like SemEval-2016 and P-Stance using the micro-average F1 score 
demonstrate an average improvement of about 16.15% over statistics-
based models like TPDG and 9.73% over fine-tuning based methods 
like RoBERTa-FT. In zero-shot stance detection, where the target may 
be completely new, PSDCOT also excels, particularly on the VAST 
dataset, by leveraging its prompt-tuning framework and ChatGPT-
enhanced knowledge. Despite the inherent challenges of zero-shot 
settings, PSDCOT effectively incorporates background knowledge and 
adapts to unseen targets, demonstrating its robustness and versatility.

Critique and Limitations: Despite their advancements, knowledge-
enhanced prompt-tuning methods face some challenges. Scalability 
remains a significant hurdle, as incorporating extensive knowledge 
sources can lead to increased computational costs and inefficiencies. 
Additionally, reliance on static knowledge bases limits their adapt-
ability to dynamic or rapidly evolving topics, while current prompt 
strategies often struggle with robustness when applied to unseen or 
highly nuanced scenarios. These methods represent a promising syn-
thesis of knowledge integration and prompt-tuning, addressing many 
limitations of standalone approaches. However, further research is 
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needed to develop more scalable and adaptable frameworks that can 
dynamically incorporate updated and relevant knowledge sources.

Key observations

Table  3 summarizes and enables comparison of the performance 
of different cross-target and zero-shot stance detection approaches. 
In this table, some approaches were excluded because comparable 
performance scores had not been made available (e.g., methods us-
ing aggregated results across 16 datasets without individual scores). 
Knowledge-enhanced prompt-tuning methods (Kn-Pr) generally out-
perform other approaches across diverse datasets, showcasing their 
effectiveness in leveraging contextual knowledge. For instance, LKI-
BART achieves an impressive F1 score of 79.6 on the VAST dataset 
and 81.9 on P-Stance, while KAI secures the highest F1 score of 
73.9 on SemEval-2016. Among fine-tuning-based methods, CT-TN and 
Stance+Ego perform notably well on P-Stance, with F1 scores of 77.0 
and 75.0, respectively, indicating advancements in user-centric stance 
detection. Furthermore, methods like MPPT (68.8 on SemEval-2016) 
and WS-BERT (75.3 on VAST) highlight the effectiveness of fine-tuning 
and knowledge-enhanced approaches on specific datasets.

Interestingly, older statistical methods such as BiCond and CrossNet 
exhibit comparatively lower F1 scores, emphasizing the limitations of 
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s

traditional techniques in handling complex stance detection tasks. Ad-
ditionally, prompt-tuning methods like MPPT and EZSD-CP show com-
petitive performance, suggesting the growing relevance of lightweight, 
adaptive approaches in stance detection.

6. Comparative analysis of statistical and deep learning approache

Stance detection methods can be broadly categorized into two main 
types: statistical methods and deep learning-based approaches. Each 
category has its strengths and weaknesses, which become particularly 
evident when performing tasks such as zero-shot or cross-target stance 
detection. In this section, we compare these two categories in terms of 
their advantages, limitations, and performance in specific tasks.

6.1. Statistical methods

Statistical methods in stance detection typically rely on manually 
engineered features, such as word frequencies, n-grams, sentiment 
scores, and syntactic features, combined with machine learning algo-
rithms like Support Vector Machines (SVM), Logistic Regression, or 
Naive Bayes. These methods are highly interpretable and computation-
ally efficient, especially when labeled data is scarce and computational 
resources are limited. However, they have significant drawbacks when 
dealing with more complex or nuanced tasks, such as zero-shot or 
cross-target stance detection.

In zero-shot settings, where the model needs to classify data from 
categories or targets it has not encountered during training, statistical 
methods fall short. Their reliance on predefined, handcrafted features 
limits their ability to generalize beyond what they’ve been explicitly 
trained on. Additionally, statistical methods struggle with capturing the 
context and semantic meaning of words, making them less effective 
in scenarios where understanding subtle relationships and nuances is 
crucial. In cross-target detection, where the stance towards different 
targets needs to be detected, these methods also perform poorly due to 
their inability to adapt to diverse contexts and their limited scope in 
capturing long-range dependencies between words or entities.

6.2. Deep learning methods

Deep learning methods have revolutionized stance detection by 
leveraging the power of neural networks and large-scale pre-trained 
language models. These methods, particularly in the areas of fine-
tuning, prompt-tuning, and knowledge-enhanced approaches, offer a 
significant improvement over traditional statistical methods, especially 
in tasks such as zero-shot and cross-target detection.

• Fine-Tuning-Based Methods
Fine-tuning-based methods involve adapting pre-trained deep 
learning models (such as BERT, RoBERTa, or GPT) to specific 
stance detection tasks by training them on task-specific labeled 
data. These models benefit from transfer learning, as they lever-
age knowledge learned from large, generic corpora. Fine-tuning 
allows models to capture complex contextual relationships and 
semantic meanings within the text, which are critical for stance 
detection.
In zero-shot scenarios, fine-tuning alone may not be sufficient. 
While fine-tuned models can perform well on in-target stance 
detection tasks, they often struggle with new targets unless they 
have been explicitly fine-tuned on similar data. However, they 
excel in cross-target detection when fine-tuned for a wide range of 
target categories. Fine-tuning-based models are computationally 
intensive and require substantial labeled data to optimize their 
performance, making them less ideal for resource-constrained 
settings.
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• Prompt-Tuning-Based Methods
Prompt-tuning-based methods work by modifying the input
prompts to guide pre-trained language models in generating 
outputs relevant to stance detection tasks. These methods are 
particularly advantageous in zero-shot scenarios, where the model 
must detect stances towards unseen targets without the need 
for extensive retraining. By crafting carefully designed prompts, 
models can leverage their general knowledge to infer stances for 
new targets based on the prompt structure.
Prompt-tuning requires fewer resources compared to fine-tuning, 
as it doesn’t involve retraining large models. However, the quality 
of the results depends heavily on the design of the prompt. 
While prompt-tuning models are flexible and effective for zero-
shot detection, they may not perform as well in more complex 
tasks like cross-target detection, unless enhanced with additional 
domain-specific knowledge.

• Knowledge-Enhanced Methods
Knowledge-enhanced methods integrate external knowledge
sources—such as knowledge graphs, ontologies, or domain-
specific databases—into deep learning models to improve stance 
detection. This approach enables the model to make more in-
formed decisions by incorporating structured knowledge about 
relationships between targets, entities, and concepts.
These methods are particularly useful for tasks like cross-target 
detection, where understanding the relationships between differ-
ent targets is crucial. Knowledge-enhanced methods can help the 
model navigate complex interactions, such as detecting the stance 
of different users towards political candidates, brands, or con-
troversial topics. However, the integration of external knowledge 
can increase computational complexity and introduce challenges 
related to knowledge alignment and consistency.

• Knowledge-enhanced Prompt-tuning based methods
The combined approach of knowledge-enhanced prompt-tuning-
based methods integrates the strengths of both prompt-tuning 
and knowledge-enhanced techniques. By incorporating external 
knowledge into the prompt, these methods are able to handle both 
zero-shot and cross-target stance detection more effectively. The 
combination allows the model to leverage both the flexibility of 
prompt-based tuning and the additional contextual information 
provided by external knowledge sources.
This hybrid approach is particularly useful in scenarios where 
models need to adapt to new, unseen targets while maintaining 
high performance across various contexts. It offers significant 
improvements in tasks requiring nuanced understanding of re-
lationships and entities, such as cross-target stance detection. 
However, the complexity of this method increases as it requires 
the careful selection and integration of relevant external knowl-
edge into the prompt, which can introduce new challenges related 
to the quality and coherence of the knowledge used.

6.3. Comparative performance in specific tasks

In zero-shot stance detection, prompt-tuning-based methods and 
knowledge-enhanced prompt-tuning methods perform best due to their 
ability to generalize to unseen targets. Statistical methods, by contrast, 
struggle in these scenarios due to their reliance on predefined features 
and lack of flexibility.

In cross-target stance detection, knowledge-enhanced and com-
bined knowledge-prompt-tuning methods excel by providing additional 
context and understanding of the relationships between different tar-
gets. While fine-tuning-based methods can perform well for in-target 
detection, they tend to degrade in performance when the targets change 
significantly. Statistical methods perform poorly in cross-target detec-
tion due to their inability to adapt to new contexts.

In conclusion, while statistical methods still hold relevance in sim-
pler settings where labeled data is limited, deep learning approaches—
especially fine-tuning, prompt-tuning, and knowledge-enhanced
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Fig. 3. Distribution of platforms used across various stance datasets.

methods—represent a significant advancement in stance detection
tasks. Knowledge-enhanced methods, particularly when combined with 
prompt-tuning, offer superior performance in complex scenarios such as 
zero-shot and cross-target stance detection. The continued integration 
of external knowledge and the development of more efficient tuning 
strategies will likely shape the future of stance detection in increasingly 
dynamic and nuanced environments.

7. Summary of surveyed studies

In the end, we gathered 48 relevant papers, as depicted in Fig. 
4, which illustrates an upward trend in publications from the first in 
2016 through 2024. Also, Fig.  3 illustrates the distribution of plat-
forms utilized in the stance datasets reviewed in Section 3. Twitter 
is the predominant platform, appearing in the majority of datasets, 
while platforms such as Reddit, Weibo, and ARC corpus are used less 
frequently.

8. Open challenges and future directions

8.1. Open challenges

While there has been significant progress in cross-target stance 
detection over the last decade, there are still numerous limitations 
and weaknesses that need further exploration. One major issue is 
the challenge of generalizing to unseen targets; which is however a 
frequent, real-world challenge in various domains, such as for example 
in politics where new political candidates emerge for which data for 
training a stance detection model is not available. Models such as 
TPDG and RoBERTa-FT demonstrate this limitation when facing new 
targets, as they rely heavily on target-specific features and labeled data. 
These models often underperform in cross-target scenarios due to their 
dependency on training data that may not encompass the range of 
target types that will be seen in the future. For instance, in evaluations 
where models like ANEK showed robust performance, this success often 
depended on their ability to leverage external knowledge effectively. 
However, even advanced methods like ANEK, which utilize adversarial 
learning and sentiment information, sometimes fall short in scenarios 
where the target is completely new or out-of-distribution. This high-
lights a significant weakness in current approaches: the reliance on 
target-specific data or pre-existing knowledge that may not always align 
with novel or unseen targets.
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Another limitation is related to the integration and application 
of external knowledge. While models like KEprompt and PSDCOT 
attempt to address this by incorporating various knowledge sources, 
they still encounter difficulties in dynamically selecting and utilizing 
the most relevant knowledge for each specific target. KEprompt, for 
instance, integrates external knowledge from sources like SenticNet 
and ConceptGraph but may struggle with ensuring that this knowledge 
is always applicable and relevant across different contexts. Similarly, 
PSDCOT’s reliance on prompt-tuning and background knowledge, while 
improving performance, still faces challenges in adapting this knowl-
edge dynamically in zero-shot scenarios. The issue is exacerbated by 
the complexity of effectively managing and integrating diverse knowl-
edge sources, which can lead to an over-reliance on certain types of 
information and potentially limit the model’s flexibility and accuracy.

Additionally, the interpretability and transparency of stance de-
tection models remain a concern. Although models like NPS4SD of-
fer improvements in interpretability by integrating knowledge rules, 
there is still a need for more refined approaches that balance between 
transparency and performance. The ability to explain why a model 
made a certain prediction, especially in complex cross-target scenar-
ios, is crucial for trust and understanding. Current models, despite 
their advancements, often provide limited insight into their decision-
making processes, making it challenging to diagnose and address their 
weaknesses effectively.

8.2. Avenues for future work

To advance cross-target stance detection, future research should 
focus on enhancing generalization capabilities by developing models 
that can better adapt to novel and unseen targets. This involves improv-
ing techniques for leveraging both target-specific and target-invariant 
features in a more balanced and dynamic manner. One promising 
avenue is the exploration of more sophisticated knowledge integration 
methods, such as adaptive knowledge retrieval systems that can dynam-
ically adjust based on the target’s context. Incorporating mechanisms 
for real-time knowledge updates could also help models stay current 
with emerging targets and contexts, enhancing their robustness and 
relevance.

Additionally, enhancing model interpretability should be a prior-
ity. Future work could focus on developing methods that provide 
clearer insights into how models make decisions, particularly in com-
plex cross-target scenarios. Techniques such as explainable AI (XAI) 
and transparent reasoning frameworks could be integrated to offer 
more detailed explanations of model predictions. This would not only 
improve user trust and understanding but also facilitate more effec-
tive model debugging and refinement. Combining these advances with 
improved knowledge integration strategies could significantly enhance 
the performance and applicability of stance detection models across 
diverse and evolving scenarios.

Where large language models (LLMs) are increasingly being used 
in natural language processing (Zubiaga, 2024), their use for stance 
detection is still in its infancy (Lan et al., 2024). However, the limited 
research to date has shown that they do provide a promising avenue 
for research toward generalization in stance detection (Mahmoudi, 
Behkamkia, & Eetemadi, 2024; Wagner, Behrendt, Ziegele, & Harmel-
ing, 2024), which remains largely unexplored in cross-target stance 
detection (Ding, Chen et al., 2024; Zhang, Li, Zhang et al., 2024).

To address unseen targets, adversarial training strategies could be 
enhanced by incorporating robust data augmentation techniques or 
crafting task-specific adversarial examples that better reflect real-world 
complexities. This would enable models to better adapt to challenging 
cross-target scenarios. Another promising direction involves the use of 
multilingual datasets, which can bridge linguistic and cultural gaps, 
fostering cross-lingual generalization. By leveraging transfer learning, 
multilingual datasets can provide valuable insights for stance detection 
in underrepresented languages, expanding the applicability of CTSD 
models to global contexts.
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Fig. 4. Publications per year up to August 2024.
9. Conclusion

This survey provides a comprehensive overview of recent advance-
ments and challenges in cross-target stance detection, highlighting the 
evolution of models and methodologies as well as existing datasets 
suitable for the task. It discusses 48 papers introducing methods to 
cross-target stance detection, as well as 15 datasets. It reviews key 
approaches such as NPS4SD, ANEK, CNet-Ad, and knowledge-enhanced 
prompt-tuning methods like KEprompt, INJECT, LKI-BART, KAI, and 
PSDCOT. Each of these methods brings unique contributions to the 
field, addressing different aspects of stance detection, from integrat-
ing external knowledge and commonsense reasoning to improving 
zero-shot and cross-target performance.

To conclude, the review critically analyzes the current state of 
the field, delving into the key open challenges and the main avenues 
suggested for future research.
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