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 A B S T R A C T

Citation Worthiness Detection (CWD) consists in determining which sentences, within an article or collection, 
should be backed up with a citation to validate the information it provides. This study, introduces ALPET, 
a framework combining Active Learning (AL) and Pattern-Exploiting Training (PET), to enhance CWD for 
languages with limited data resources. Applied to Catalan, Basque, and Albanian Wikipedia datasets, ALPET 
outperforms the existing CCW baseline while reducing the amount of labeled data in some cases above 80%. 
ALPET’s performance plateaus after 300 labeled samples, showing it suitability for low-resource scenarios 
where large, labeled datasets are not common. While specific active learning query strategies, like those 
employing K-Means clustering, can offer advantages, their effectiveness is not universal and often yields 
marginal gains over random sampling, particularly with smaller datasets. This suggests that random sampling, 
despite its simplicity, remains a strong baseline for CWD in constrained resource environments. Overall, 
ALPET’s ability to achieve high performance with fewer labeled samples makes it a promising tool for 
enhancing the verifiability of online content in low-resource language settings.
1. Introduction

The rise of misinformation in the digital age has made automated 
fact-checking an essential tool in ensuring the reliability of informa-
tion (Guo, Schlichtkrull, & Vlachos, 2022; Thorne & Vlachos, 2018). Au-
tomated fact-checking are complex systems including tasks that involve 
the identification of information worthy of checking, linking it with evi-
dence and the subsequent verification step (Zeng, Abumansour, & Zubi-
aga, 2021). While substantial progress has been made in fact-checking 
systems for major languages, low-resource languages remain largely 
underexplored and are recently receiving more attention (Halitaj & 
Zubiaga, 2024; Le, To, Nguyen, & Van Nguyen, 2024).

Misinformation has a global impact (Quelle, Cheng, Bovet, & Hale, 
2023), so contributing towards advancement of fact-checking sys-
tems for low-resource languages is necessary to maintain informa-
tion integrity worldwide. However, in doing so, the scarcity of la-
beled datasets for low-resource languages poses a significant chal-
lenge (Gupta & Srikumar, 2021). Many of the existing methods for 
developing automated fact-checking systems rely on extensive labeled 
data, which is often unavailable for low-resource languages. Further-
more, in high-resource languages, like English, fact-checking systems 
have the advantage of focusing on specific domains, such as political 
discourse, which generates abundant data for verification (Konstanti-
novskiy, Price, Babakar, & Zubiaga, 2021). In contrast, low-resource 
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languages often lack this advantage, as the volume of digital informa-
tion available in specialized topics is more limited, affecting the ability 
to build effective systems within a single domain of a language (Gupta 
& Srikumar, 2021; Shahi & Nandini, 2020); as a result, we cannot limit 
ourselves to one specific domain for a low-resource language.

In this research we address this challenge by using Wikipedia data, 
which spans a wide range of topics and domains. The goal is to develop 
a method for citation worthiness detection (CWD), where the task is 
to determine whether a sentence needs to be accompanied with a 
citation to back it up; an ability to detect sentences needing citation 
in turn supports the integrity of Wikipedia. Research in CWD has been 
limited to date, with the majority of efforts focused on English (Redi, 
Fetahu, Morgan, & Taraborelli, 2019); when it comes to low-resource 
languages, the only such effort to date was with CCW (Halitaj & 
Zubiaga, 2024), where we introduced a context-aware model that 
leverages surrounding sentences and topic categories to help determine 
if a sentence should be accompanied with a citation.

Furthering the limited research of CWD in low-resource language, 
here we are the first to propose an active learning strategy specifically 
tailored to address data scarcity in the task. We introduce a novel 
method called ALPET (Active Learning with Pattern Exploiting Train-
ing), which integrates active learning (AL) strategies with few-shot 
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learning (FSL) techniques using pre-trained language models (PLMs). 
This approach is designed to maximize performance with minimal 
labeled data, addressing the limitations of existing methods for low-
resource languages. ALPET strategically selects the most informative 
samples for labeling, thus reducing the need for extensive labeled 
datasets, which are often unavailable for low-resource languages. While 
few-shot learning (FSL) enables models to generalize from a small num-
ber of examples (Wang, Yao, Kwok, & Ni, 2020), AL further optimizes 
this process by focusing on high-value samples, reducing the cost and 
time associated with manual labeling. Despite the promise of both AL 
and PET, their integration for low-resource languages in CWD tasks has 
not been explored until now.

The goal of ALPET is to investigate whether AL strategies, when 
combined with PET, could improve model performance as opposed to 
the existing models like CCW (Halitaj & Zubiaga, 2024). Furthermore, 
in this research we investigate if ALPET can select more informative 
samples than random selection. While we initially hypothesized that 
this approach would consistently outperform random sampling, the re-
sults indicate that the effectiveness of AL strategies is more nuanced and 
context-dependent. Despite this, the study provides valuable insights 
into the challenges of applying AL and FSL methods in low-resource 
language settings, offering a foundation for future work in optimizing 
data selection and model performance in these environments.

Our study makes the following contributions:

1. We introduce ALPET, a novel active few-shot learning method 
that integrates active learning (AL) strategies with few-shot 
learning (FSL) techniques using pre-trained language models 
(PLMs) through Pattern Exploit Training (PET). ALPET leverages 
Wikipedia data to address the data scarcity issue in low-resource 
languages by strategically selecting the most informative sam-
ples for labeling, reducing the dependency on large, labeled 
datasets.

2. We provide a comprehensive analysis of multiple variants of our 
proposed ALPET framework, including with various AL query 
strategies for CWD, comparing their performance against ran-
dom sampling in a few-shot learning environment. The analysis 
focuses on the effectiveness of these strategies in identifying 
informative data points for labeling and its suitability for CWD 
in low-resource settings, with a particular emphasis on K-Means 
clustering techniques.

3. The research quantifies the reduction in labeled data achieved 
by ALPET compared to existing methods like CCW while main-
taining comparable performance. This reduction in manual an-
notation not only improves efficiency but also significantly re-
duces development costs, making it particularly valuable in 
low-resource contexts.

4. Within the largely unexplored realm of CWD for low-resource 
languages, ours is the first effort to incorporate and investi-
gate active learning, in turn comparing with the state-of-the-art 
method, CCW, and providing a comprehensive analysis of the 
potential benefits of the proposed strategy.

These contributions offer a deeper understanding of the challenges 
and potential solutions for CWD in low-resource languages and pave the 
way for further advancements in the field by establishing a foundation 
for building effective CWD systems for under-resourced languages.

2. Research objectives and hypotheses

The scarcity of labeled data in low-resource languages presents 
a major challenge for developing automated fact-checking systems. 
In this research, we aim to address this issue by exploring how the 
combination of AL and PET can enhance citation check-worthiness 
detection for low-resource languages, which in our case we investigate 
with Albanian, Basque, and Catalan.

The specific objectives (O) of this research, and the hypotheses (H) 
we set forth in line with the objectives, are:
2 
• O1: To investigate whether ALPET can achieve comparable or su-
perior citation worthiness detection performance in low-resource 
languages (Albanian, Basque, and Catalan) compared to the CCW 
baseline model, while utilizing fewer labeled examples. This ob-
jective directly addresses hypothesis H1, which posits that ALPET 
will outperform CCW in data efficiency and F1 score in low-
resource languages.
H1: ALPET outperforms the CCW baseline model in terms of 
data efficiency (fewer labeled examples) and performance (F1 
Score) in low-resource languages while using the same AL query 
strategies.

• O2: To determine the optimal number of labeled examples re-
quired by ALPET to achieve peak performance in citation wor-
thiness detection for low-resource languages, analyzing whether 
the model’s performance plateaus after a certain number of la-
beled samples. This objective is directly related to hypothesis 
H2, which suggests that ALPET’s performance will plateau after 
a certain number of samples, highlighting its effectiveness with 
small datasets.
H2: ALPET’s performance improves with increasing labeled data 
but it may reach a plateau at a certain point, suggesting that 
the method is effective with small sized datasets in low-resource 
settings.

• O3: To quantify the reduction in labeled data achieved by ALPET 
compared to the CCW baseline model while maintaining compa-
rable citation worthiness detection performance in low-resource 
languages, assessing the robustness of ALPET’s performance with 
reduced training data. This objective is linked to hypothesis H3, 
which predicts that ALPET will achieve competitive performance 
with an average of 58%–72% fewer labeled examples than CCW, 
demonstrating its robustness in low-resource settings.
H3: ALPET can match the performance of CCW with far fewer 
labeled examples in low-resource languages. Its performance stays 
stable even as the number of labeled examples decreases, showing 
its robustness in these settings.

• O4: To compare the performance of various active learning 
query strategies against random sampling in selecting informative 
data points for citation worthiness detection in low-resource 
languages, evaluating their effectiveness based on the F1 Score. 
This objective directly addresses hypothesis H4, which states that 
active learning query strategies generally achieve higher F1 scores 
than random sampling in low-resource languages.
H4: Active learning query strategies generally achieve higher F1 
scores than random sampling in low-resource language datasets.

3. Background and related work

3.1. Citation worthiness detection (CWD)

Citation worthiness detection, often referred to as the ‘‘citation 
needed’’ task in the literature, involves identifying whether a sentence 
within a given corpus requires a citation (Bonab, Zamani, Learned-
Miller, & Allan, 2018; Redi et al., 2019). This task is particularly crucial 
on collaborative platforms like Wikipedia, where maintaining informa-
tion credibility is essential. By ensuring that unsourced statements are 
flagged to be properly supported by reliable references, CWD helps 
prevent the spread of misinformation. CWD in Wikipedia simplifies 
and speeds up the process of verifiability policy1 by prioritizing un-
sourced sentences to be reviewed by editors. This process is vital for 
maintaining academic and public trust in Wikipedia, which serves as 
a widely-used reference for both educational and general purposes. 
It is also critical in fact-checking systems to evaluate the veracity of 
claims (Sathe, Ather, Le, Perry, & Park, 2020), and in various social 

1 https://en.wikipedia.org/wiki/Wikipedia:Verifiability.
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media platforms to combat misinformation (Baigutanova et al., 2023; 
Halitaj & Zubiaga, 2024).

CWD in low-resource languages has several challenges. One major 
issue is the availability of credible labeled datasets, as these lan-
guages often lack the extensive digital content needed to develop 
such resources. As a result, most NLP tools and pre-trained models, 
like BERT and GPT, are optimized for high-resource languages, lead-
ing to suboptimal performance in low-resource contexts. Specifically, 
considering that low-resource languages have variety of dialects that 
are underrepresented or not captured at all by PLMs. The scarcity of 
scientific research focused on low-resource languages further amplifies 
the problem, as most advancements in the field are designed and tested 
on larger languages.

Existing CWD approaches in Wikipedia are usually defined as su-
pervised learning text classification task. The pioneering work for this 
task started from the assessment of Wikipedia verifiability policy (Redi 
et al., 2019) where they used recurrent neural networks (RNN) with 
GRU cells and GloVe pre-trained word embeddings to identify sentences 
that needed citation. However, they heavily relied on featured arti-
cles,2 citation needed tag,3 and manual annotation efforts to create the 
dataset.

Building upon Redi’s work, another approach was proposed uti-
lizing positive unlabeled learning where they aimed to develop an 
unified approach to check-worthiness detection tasks including claim 
detection, rumour detection and citation needed (Wright & Augenstein, 
2020). While aiming to create a unified solution for these three distinct 
tasks, authors also aimed to reduce manual labeling effort by asking 
annotators to mark only sentences that were clear-cut check-worthy 
and the rest to be handled through positive unlabeled method. They 
used transfer-learning to transfer the knowledge from one task to 
another and different from more traditional neural networks used in 
Redi’s approach, in this research they used pre-trained BERT model.

Both studies (Redi et al., 2019; Wright & Augenstein, 2020) focused 
primarily on English, leveraging featured articles and {citation needed}
tags added by active editors. These methods, however, are not appli-
cable to low-resource languages due to the scarcity of featured articles 
and the absence of such tags, resulting from a lack of active editorial 
communities. To overcome this challenge, a recent study proposed 
an approach to use quality score of articles to automatically build a 
credible datasets for low-resource languages (Halitaj & Zubiaga, 2024). 
Unlike previous work, which relied solely on the sentence text and its 
section placement within an article, this study used adjacent sentences 
as contextual information and employed mBERT for the final classifi-
cation of sentences needing citations. While their approach advances 
CWD in low-resource languages, it relies on substantial amount of data 
due to the need for contextual information from adjacent sentences; 
and the automated large-scale labeling process, although innovative, 
carries the challenge of potential inaccuracies, as it cannot fully ensure 
the correctness of every label. Incorporating an oracle in the labeling 
process through active learning could address these issues by enhancing 
the credibility of the dataset. Building on this foundation, we propose 
an approach that integrates cold-start pool-based active learning with 
few-shot learning using Pattern Exploit Training (PET), which reduces 
the data requirements for effective CWD and minimizes dependence on 
additional contextual information.

3.2. Active learning in NLP

Active learning (AL) is a machine learning approach where the 
algorithm uses a querying strategy to identify the most informative 
data points for labeling by an oracle, to improve model’s perfor-
mance (Settles, 2009). The goal is to overcome the labeling bottleneck 

2 https://en.wikipedia.org/wiki/Wikipedia:Featured_articles.
3 https://en.wikipedia.org/wiki/Wikipedia:Citation_needed.
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of traditional passive learning systems by optimizing the model’s per-
formance with a smaller set of labeled examples, making the learning 
process more efficient and cost-effective. This approach is particularly 
valuable in scenarios with limited labeled data, such as low-resource 
Natural Language Processing (NLP) tasks.

AL involves two key concepts: problem scenarios and query strate-
gies. Scenarios define the learning environment, including how data is 
presented and how the model interacts with it, while query strategies 
determine which data points to label within that scenario. Some query 
strategies can be applied across multiple scenarios, while others are 
scenario-specific. For an AL system to be effective, it is essential to 
match the appropriate query strategy with the right scenario. Ac-
cording to the existing literature some of the main AL scenarios are 
membership query synthesis (Angluin, 1988), stream-based selective 
sampling (Cohn, Atlas, & Ladner, 1994), pool-based sampling (Lewis 
& Gale, 1994), batch AL (Brinker, 2003), and multi-task AL (Acharya, 
Mooney, & Ghosh, 2014; Harpale & Yang, 2010; Reichart, Tomanek, 
Hahn, & Rappoport, 2008). Each scenario offers distinct advantages and 
has seen different levels of application in NLP. In what follows we will 
briefly introduce the above mentioned AL scenarios.

1. Membership Query Synthesis (MQS). It is one of the earliest AL 
scenarios (Baum & Lang, 1992) which enables the generation 
of artificial examples to expand datasets based on defined fea-
ture dimensions. Initially endorsed for automated oracles (King 
et al., 2009, 2004) due to the challenges humans faced in 
interpreting synthetic examples, MQS has recently been applied 
to simple text classification tasks (Quteineh, Samothrakis, & Sut-
cliffe, 2020; Schumann & Rehbein, 2019). Nonetheless, its use 
remains limited, specifically for more complex NLP tasks with 
unbalanced data (Schumann & Rehbein, 2019; Zhang, Strubell 
and Hovy, 2022).

2. Stream-Based Selective Sampling. Also known as online AL (Cac-
ciarelli & Kulahci, 2024), this scenario involves data arriving in 
a continuous stream, requiring the learner to decide in real-time 
whether to request the label (Settles, 2009). Query strategies like 
uncertainty sampling, threshold-based decision, query by com-
mittee are commonly employed to make this decision effective. 
This scenario has been applied in several NLP tasks, including 
part-of-speech tagging (Dagan & Engelson, 1995), named en-
tity recognition (Van Tran, Nguyen, Hoang, Hwang, & Nguyen, 
2017), sentiment analysis (Kranjc et al., 2015; Smailović, Grčar, 
Lavrač, & Žnidaršič, 2014) etc.

3. Pool-Based Sampling. This scenario, perhaps the most exten-
sively researched in NLP (Settles, 2012), involves selecting the 
most informative samples from a large, static pool of unla-
beled data (Lewis & Gale, 1994). It has been successfully ap-
plied in a wide range of NLP tasks, including text classifica-
tion (Lewis & Gale, 1994; Siddhant & Lipton, 2018; Tong & 
Koller, 2001; Zhang, Feng and Tan, 2022; Zhang, Lease, & Wal-
lace, 2017), speech recognition (Tur, Hakkani-Tür, & Schapire, 
2005), named entity recognition (Dossou et al., 2022; Radmard, 
Fathullah, & Lipani, 2021; Tsvigun et al., 2022), part of speech 
tagging (Mendonça, Sardinha, Coheur, & Santos, 2020; Ringger 
et al., 2007; Stratos & Collins, 2015), word sense disambigua-
tion (Alagić & Šnajder, 2015; Dligach & Palmer, 2011; Zhu, 
Wang, Yao, & Tsou, 2008), machine translation (Chimoto & 
Bassett, 2022; Zhao, Zhang, Zhou, & Zhang, 2020), language 
understanding (Grießhaber, Maucher, & Vu, 2020), and prompt 
engineering (Qian et al., 2024). The versatility of this approach 
is further enhanced by combining it with deep learning tech-
niques like transfer-learning (Mamooler, Lebret, Massonnet, & 
Aberer, 2022; Zhang, Feng et al., 2022), semi-supervised learn-
ing (Imamura, Takayama, Kaji, Toyoda, & Kitsuregawa, 2009; 
Tsvigun et al., 2023), weak supervision (Brantley, Sharaf, & 
Daumé III, 2020; Qian, Raman, Li, & Popa, 2020; Zhang, Yu, 
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Shetty, Song and Zhang, 2022), data augmentation (Dossou 
et al., 2022; Zhao et al., 2020), and few-shot learning (Bayer 
& Reuter, 2024; Müller, Pérez-Torró, Basile, & Franco-Salvador, 
2022; Qian et al., 2024; Zeng & Zubiaga, 2022; Zhu, Yadav, 
Afzal, & Tsatsaronis, 2022), resulting in development of various 
query strategies adhering to deep neural network (DNN) char-
acteristics (Gal & Ghahramani, 2016). However, its application 
in more specialized tasks, such as citation worthiness detection, 
remains underexplored.

4. Batch Active Learning. Unlike traditional AL, where data points 
are queried one by one, batch AL queries multiple data points 
simultaneously to increase efficiency and reduce the number of 
iterations needed for model improvement (Citovsky et al., 2021; 
Settles, 2009). This approach has been applied in various NLP 
tasks, including text classification (Beatty, Kochis, & Bloodgood, 
2018), machine translation (Ananthakrishnan, Prasad, Stallard, 
& Natarajan, 2010; Shi, Benton, Malioutov, & Irsoy, 2021), 
rumor detection (Farinneya, Pour, Hamidian, & Diab, 2021), 
and named entity recognition (NER) (Shen, Zhang, Su, Zhou, & 
Tan, 2004; Shi et al., 2021). However, ensuring diversity among 
selected examples remains a challenge (Ash, Zhang, Krishna-
murthy, Langford, & Agarwal, 2019; Hoi, Jin, & Lyu, 2006), 
particularly in complex NLP tasks with unbalanced data, where 
similar sentences and repetition can reduce information gain.

5. Multi-Task Active Learning (MTAL). It handles multiple tasks 
simultaneously, improving efficiency by allowing related tasks 
to share data and enhancing performance; for distinct tasks 
by ensuring comprehensive annotations (Reichart et al., 2008; 
Settles, 2009). It has been applied in NLP tasks such as role 
labeling (Ikhwantri et al., 2018), dependency parsing (Rotman 
& Reichart, 2022), named entity recognition (Rotman & Re-
ichart, 2022; Zhou, Cai, Zhang, Guo, & Yuan, 2021), and natural 
language understanding (Zhu, Ye, Luo, & Zhang, 2020). While 
challenges like data scarcity and annotation complexity exist 
across different AL scenarios, they are magnified in MTAL due 
to the need to manage multiple tasks simultaneously. This adds 
layers of complexity and resource demands that are less notice-
able in single-task scenarios, making it less suited for complex 
tasks like those in fact-checking.

Pool-based sampling is one of the most used AL query strategy in 
NLP tasks due to its effectiveness in minimizing labeling costs by select-
ing only the most informative data points. This approach allows modern 
NLP models, specifically PLMs, such as transformers (e.g., BERT (De-
vlin, 2018), GPT (Radford, Narasimhan, Salimans, Sutskever, et al., 
2018), T5 (Raffel et al., 2020)), to achieve high performance with 
limited resources (Dor et al., 2020; Li et al., 2024; Lu et al., 2023; Yao 
et al., 2023; Zeng, 2024), particularly in low-resource languages and 
domains (Grießhaber et al., 2020; Kasai, Qian, Gurajada, Li, & Popa, 
2019; Li et al., 2024; Maekawa, Zhang, Kim, Rahman, & Hruschka, 
2022; Öhman, 2021; Ye, Liu, Pavani, & Dasgupta, 2023; Zhou & Waibel, 
2021). It also facilitates rapid domain adaptation (Lu et al., 2023) 
and enhances human-in-the-loop systems by focusing efforts on the 
most impactful examples (Yao et al., 2023). Yet, its application in 
more specialized tasks, such as citation worthiness detection, remains 
underexplored – a gap we aim to address in our research.

While AL has been used in related areas like misinformation de-
tection (Barnabò et al., 2023), rumour detection (Farinneya et al., 
2021), claim verification (Zeng & Zubiaga, 2022), its use in CWD in 
Wikipedia settings is limited. These studies primarily focus in specific 
domains like political fact-checking and English language, rather than 
the broader, domain-agnostic context of Wikipedia. The gap in the 
literature suggests a need for further exploration in applying AL to CWD 
task, particularly with an emphasis on language diversity and resource 
constraints.

In the context of fact-checking, AL has been combined with models 
like PET to improve the accuracy of claim verification (Zeng & Zubiaga, 
4 
2022). However, similar integration for citation worthiness detection 
or claim detection (as a related task), especially within low-resource 
language settings, is not common. Our work seeks to address this gap 
by exploring different pool-based AL query strategies in conjunction 
with PET models to improve CWD in low-resource settings.

In the next section we explain in more details our proposed method-
ology.

4. Methodology

The proposed methodology, referred to as ALPET, integrates Active 
Learning (AL) and Pattern Exploit Training (PET) to create an efficient 
approach for data selection and model training in low-resource setting. 
It is structured into four key steps:

1. Data selection: the process begins with applying pool-based 
active learning strategies to select informative data points from 
a large pool of unlabeled sentences (see Section 4.1).

2. Data processing: the selected data is processed to remove re-
dundancy when it exists such as duplicates and highly similar 
sentences, ensuring dataset diversity (see Section 4.2).

3. Multi-round dataset preparation for FSL: multiple rounds of 
datasets are then created with incremental sample sizes for each 
active learning strategy (see Section 4.3).

4. Model training: the PET model with mBERT is used to train and 
classify sentences as needing citations (see Section 4.4).

Fig.  1 provides a detailed flowchart of the ALPET model archi-
tecture, illustrating each of the steps mentioned above including an 
example of doing CWD with PET.

4.1. Data selection

The CWD task is framed within a pool-based AL scenario using 
various query strategies. Central to these strategies is the acquisition 
function, a term commonly used in mathematical definitions to describe 
the mechanism that assigns a score to each unlabeled data point based 
on specific criteria. In the context of AL, this function is often referred 
to as a query framework or query strategy (Settles, 2009). Traditionally, 
acquisition functions in AL are based on uncertainty or diversity, with 
more recent approaches incorporating hybrid methods that combine 
elements of both (Margatina, Vernikos, Barrault, & Aletras, 2021). In 
this work, we employ uncertainty, diversity, and hybrid acquisition 
functions as part of our data subset selection process. Fig.  2 illustrates 
the flowchart of data selection strategies.

Since ALPET automates the data selection process using active 
learning query strategies, it minimizes the need for direct human 
annotation. Instead of relying on manual labels, we use multilingual 
BERT as a proxy oracle, where the model assigns labels to the selected 
samples. While this eliminates user annotation efforts, it is important 
to recognize that the proxy model may introduce biases inherent to its 
pretraining and fine-tuning data. Unlike traditional AL setups where a 
human annotator verifies each query, our approach fully automates the 
labeling pipeline. This ensures efficiency but also raises considerations 
regarding potential biases and label reliability. Future extensions of 
ALPET could explore integrating human-in-the-loop mechanisms to 
assess the trade-offs between automation and annotation quality.

Next we elaborate these query strategies in more details.

4.1.1. Diversity sampling
The goal here is to select data points that are as different from each 

other as possible ensuring a representative sample of the overall data 
distribution. Three diversity sampling methods that we use in this work 
are geometry-based, corset-based, and cluster samplings.
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Fig. 1. ALPET model architecture.

A. Geometry-based sampling. Distance metrics belong in the
geometry-based metrics, they play a fundamental role in iden-
tifying data points for labeling in the active learning scenarios. 
Among most widely used distance metrics are cosine and eu-
clidean distance. We have used both of them in ALPET method-
ology and more details are presented below.

1. Cosine distance is derived from cosine similarity and 
measures dissimilarity between data points. In our task, 
sentences are represented by embeddings, or high-
dimensional vectors, to capture the semantic content of 
the sentence. Cosine distance between two vectors 𝐀 and 
𝐁 is mathematically defined as: 

Cosine Distance = 1 − cos(𝜃) = 1 − 𝐀 ⋅ 𝐁
‖𝐀‖ × ‖𝐁‖

(1)

where 𝐀 ⋅𝐁 is the dot product of the vectors, and ‖𝐀‖ and 
‖𝐁‖ are their magnitudes.
Our goal in using cosine distance is to select sentences 
for labeling that represent different contexts where a ci-
tation might be needed. Sentences that are highly dissim-
ilar from those already labeled might represent different 
styles, topics, or structures that the model has not yet 
encountered. We avoided using cosine similarity because 
we did not want to end up selecting sentences that are 
very similar to those already labeled as this could lead 
to redundancy in the training data, where the model 
continues to see variations of the same sentence structure 
5 
or topic. In contrast, cosine distance encourages diversity 
in the selected data points, which we believe is crucial for 
effectively training the model in an active learning setting 
for the complex task of CWD.

2. Euclidean distance measures the straight-line distance 
between two points in a high-dimensional space. In our 
task, this metric is used to quantify the absolute difference 
between sentence embeddings, providing a direct mea-
sure of dissimilarity. The Euclidean distance between two 
vectors 𝐀 and 𝐁 is mathematically defined as: 

Euclidean Distance = ‖𝐀 − 𝐁‖ =

√

√

√

√

𝑛
∑

𝑖=1
(𝑎𝑖 − 𝑏𝑖)2 (2)

where 𝑎𝑖 and 𝑏𝑖 are the components of vectors 𝐀 and 𝐁 in 
an 𝑛-dimensional space.
Using euclidean distance, we aim to select sentences that 
are different from those already labeled, thus exploring 
underrepresented areas of the feature space. Unlike cosine 
distance, which focuses on the angular relationship be-
tween vectors, euclidean distance accounts for the overall 
magnitude of differences, making it particularly useful 
for detecting sentences that are not only contextually but 
also substantially different in their feature representations 
(such as length, complexity, or intensity). This diversity in 
selection might help minimizing redundancy and enhanc-
ing the model’s ability to generalize across different types 
of citation-worthy content.

Building on distance metrics, in this research, we have used 
several custom data selection strategies to guide the active learn-
ing process. Each method leverages either cosine or euclidean 
distance to identify the most informative data points.

i. Maximum average distance selection: In this method, 
data points are selected based on the maximum average 
distance from already selected instances. The process be-
gins with a cold start, where the first sentence is selected 
randomly from the unlabeled pool. For the next selection, 
the average distance of each candidate sentence (that has 
not been selected yet) to the already selected sentence 
is calculated. The sentence with the maximum average 
distance to the already selected sentence is chosen next. 
With two sentences selected, we recalculate the average 
distance of the remaining sentences to both selected sen-
tences. The candidate with the highest average distance is 
added to the selection pool. This loop continues until the 
desired number of sentences is selected. By focusing on 
instances that are farthest from those previously selected, 
this approach aims to select points that are diverse and 
representative of different regions of the feature space.

ii. Minimum average distance selection: This method se-
lects data points with the minimum average distance from 
the already selected instances. The selection process is 
similar to the one above that consideres the maximum 
average distance, but instead, here we consider the min-
imum average distance. The rationale here is to focus 
on data points that are similar to those already chosen, 
effectively reinforcing the model’s understanding of dense 
or well-represented areas of the feature space.

iii. Combined maximum and minimum average distance 
selection: This method alternates between selecting data 
points based on the maximum and minimum average 
distances from the already selected instances. The pro-
cess begins with a cold start, where the first sentence 
is randomly chosen from the unlabeled pool. For the 
next selection, the average distance of each candidate 
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Fig. 2. Data selection flowchart.
sentence to the already selected sentence is calculated. 
The sentence with the maximum average distance to the 
selected instance is chosen first. Once this sentence is 
added to the selection pool, the next sentence is selected 
based on the minimum average distance from the already 
selected sentences. With three sentences now in the pool, 
the average distance of the remaining candidates to the 
selected sentences is recalculated. The selection alter-
nates between choosing the sentence with the maximum 
average distance and the sentence with the minimum 
average distance, creating a balance between diversity 
and representativeness. This loop continues until the de-
sired number of sentences is selected. By combining both 
maximum and minimum average distances, it ensures that 
both diverse and representative instances are included 
in each iteration, covering a broad spectrum of the data 
space while also reinforcing existing knowledge.

iv. Maximum, minimum, and random selection: In this 
method, we introduce an element of randomness. Each 
iteration involves selecting one data point with the max-
imum average distance, one with the minimum aver-
age distance, and one randomly chosen instance. This 
approach adds an exploratory component, allowing the 
model to occasionally consider unexpected instances that 
may not fit neatly into the established patterns, leading 
to accidental discoveries.

For each custom distance-metric selection strategy, the data 
points are initially selected from the unlabeled pool following 
the methodologies outlined above considering either cosine or 
euclidean distance. Once the selection process is complete, the 
selected data points are submitted to the oracle for labeling, 
with the labels being generated based on existing data. After the 
annotation has been finalized, the labeled data points are then 
input into the PET model to determine whether each sentence 
requires a citation.
6 
B. Corset-based strategies: In AL a corset is a small, representative 
subset of the entire dataset that, when used to train a model, 
can approximate the performance of a model trained on the 
full dataset (Sener & Savarese, 2017). In our methodology we 
have used lightweight corset and greedy corset (with cosine and 
euclidean metrics).

i. Greedy coreset: Originally proposed to address the data 
labeling bottleneck for deep convolutional neural net-
works (Sener & Savarese, 2017), this approach has been 
adapted for text data in the small-text library (Schröder, 
Müller, Niekler, & Potthast, 2023). It constructs a greedy 
coreset over text embeddings, solving a k-center problem 
through a greedy approximation. The method aims for 
precise coverage and diversity by selecting points that 
minimize the maximum distance between any data point 
and its closest coreset point. While more computationally 
intensive, it is particularly useful when a highly represen-
tative subset is crucial, such as in smaller datasets.

ii. Lightweight coreset: This strategy selects a represen-
tative subset of data points using K-Means clustering, 
designed for computational efficiency by approximating 
the selection process (Bachem, Lucic, & Krause, 2018). It 
works by choosing data points that are farthest from the 
already selected points, minimizing redundancy. While 
this approach is efficient, it may not capture the full 
diversity of the data as precisely as more computationally 
intensive methods like GreedyCoreset (Schröder et al., 
2023). The method’s effectiveness depends on the quality 
of the feature representations, such as text embeddings.

C. Clustering-based strategies:

i. Anchor subsampling: This strategy addresses pool-based 
AL challenges of selecting minority class in large imbal-
anced datasets (Lesci & Vlachos, 2024). The term anchor 
here refers to the chosen class-specific instances from the 
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labeled set. The process begins by selecting anchor points 
from the labeled dataset, representing different classes of 
the data space. Each unlabeled instance is then scored 
based on its average distance from the anchors, forming 
a subpool of the most similar instances. The next step 
is selecting the instances from the subpool to be labeled 
by an oracle. Once labeled, instances are added to the 
labeled dataset and the process repeats in subsequent AL 
iterations.

4.1.2. Uncertainty sampling
Uncertainty-based selection focuses on identifying data points

where the model is most unsure of its predictions.

i. Prediction entropy: This query strategy selects instances with 
the largest prediction entropy (Schröder et al., 2023). As a 
method it was initially proposed to reduce the labeling efforts 
in an object recognition task (Holub, Perona, & Burl, 2008), 
however, in small-text library it was adapted for text-based data. 
Given a pool of unlabeled data, for each instance the model 
outputs a probability distribution over all possible classes. Then 
the entropy of the predicted probability distribution is calculated 
for each instance which are then ranked by the highest entropy 
scores indicating cases where the model is most uncertain about 
the prediction. The top k instances with the highest entropy 
scores are selected for labeling. Once labeled, instances are 
added to the training set, and the model is retrained on the 
updated labeled dataset.

ii. Least confidence: Is one of the earliest uncertainty-based strate-
gies (Lewis, 1995). It selects instances with the least prediction 
confidence (regarding the most likely class) (Schröder et al., 
2023). Specifically, for each instance in the unlabeled pool, 
the model assigns a probability distribution over the possible 
classes. Then it identifies instance where the model is least 
confident about the correct class. This instance is then selected 
for labeling because it represents a point of high uncertainty, 
where the model might benefit most from additional labeled 
data. However, this method may sometimes overlook instances 
where the model is uncertain between several classes because it 
only considers the confidence of the most likely class.

iii. Breaking ties: This function is designed to select data points 
which have a high uncertainty in classification, specifically those 
where the margin between the most likely and second most 
likely predicted class is minimal. The small margin indicates that 
the model is uncertain about which class the sentence belongs to, 
making these instances particularly valuable for AL. This strat-
egy was originally proposed in the context of image data (Luo 
et al., 2005) but in small-text library it has been adapted to work 
with text data under the name BreakingTies (Schröder et al., 
2023). The core idea to target ambiguous instances remains the 
same.

4.1.3. Hybrid sampling
Hybrid acquisition functions were developed to combine the best 

aspects of both uncertainty and diversity sampling. In this research, 
we have used Contrastive Active Learning (CAL) and ALPS (Active 
Learning by Processing Surprisal), two state-of-the-art hybrid methods, 
to maximize the efficiency of the AL process.

i. Contrastive active learning (CAL): This function combines un-
certainty and diversity sampling for warm-start AL. Using Con-
trastiveActiveLearning from small-text library (Schröder et al., 
2023), we implement CAL (Margatina et al., 2021), which fine-
tunes BERT with an initial labeled dataset and applies a KNN 
algorithm to identify the closest labeled examples for each 
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data point in the unlabeled pool. A contrastive score, based on 
Kullback–Leibler (KL) divergence between predicted probabil-
ities of the unlabeled candidate and its labeled neighbors, is 
calculated to select high-divergence examples for labeling by 
a proxy. The labeled batch is then removed from unlabeled 
pool and added to the training (labeled) dataset. This loop 
repeats until all unlabeled data have been labeled. This method 
aims to effectively identify sentences with similar vocabulary 
but differing predictions, enhancing the selection of informative 
examples.

ii. Active learning by processing surprisal (ALPS): This method 
combines uncertainty and diversity sampling for cold-start AL. 
Implemented as EmbeddingKMeans in small-text library
(Schröder et al., 2023), ALPS (Yuan, Lin, & Boyd-Graber, 2020) 
uses surprisal embeddings derived from the masked language 
modeling loss in PLMs like BERT to estimate uncertainty, by-
passing the need for unreliable model confidence scores in the 
cold-start scenario. After computing surprisal embeddings for 
each sentence in the unlabeled pool, K-Means is applied to 
cluster these embeddings and the sentence closest to each cluster 
center is selected. Thus ALPS identifies data points that are 
both surprising (indicating high uncertainty) and representative 
of diverse, underexplored areas in the data space, making it 
particularly effective in early stages where labeled data is scarce.

4.2. Data processing

4.2.1. Duplicate and similarity removal
In cold-start AL iterations, after each data subset selection, we ob-

served duplicate sentences or sentences with high structural similarity. 
To mitigate redundancy in the dataset, we applied a cosine similarity 
with TF-IDF weights. Sentences with a cosine similarity score above 0.8 
were considered too similar and were excluded from the final dataset. 
This threshold was selected based on our empirical analysis of the 
dataset, where we observed that sentences with a similarity score above 
0.8 were almost identical except for minor variations, such as differing 
in only the last one or two words.

To assess the impact of this filtering step, we ran ALPET without 
cosine similarity filtering. In this case, we observed a slight increase 
in model performance, which aligns with our expectation that the 
model benefits from learning patterns in structurally similar sentences. 
Without filtering, the model consistently predicted the same label for 
these near-duplicate sentences, reinforcing learned patterns. However, 
after removing such cases, performance declined, likely due to the 
reduced exposure to repetitive structures. For our CWD task, we aim to 
capture diverse sentence structures and contexts, so such highly similar 
sentences were unnecessary thus we opted for filtering.

4.2.2. Data balancing
This research was conducted using Wikipedia articles where each 

was split into individual sentences, forming the unlabeled pool of 
data for AL. Although the sentences were pre-labeled, we temporarily 
removed the labels to simulate an active learning environment where 
labels are obtained iteratively from an oracle.

Each languages’ dataset (ca, eu, and sq) is imbalanced, with higher 
proportion of sentences that do not contain citations compared to those 
that do. In pool-based AL scenarios, imbalance can become more pro-
nounced due to the model’s tendency to favor majority class examples, 
leading to a loop of oversampling the majority class. To address this, 
we applied random undersampling to the majority class post-selection, 
reducing its size to match the minority class. In this way the minority 
class remained sufficiently represented throughout the learning process 
which is critical for our task.
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4.3. Multi-round dataset preparation for few-shot learning

After data processing steps, each query strategy yielded a dataset 
with 3000 data points per class. We then constructed six distinct rounds 
of datasets. Each round comprises ten subsets, with the number of data 
points per class varying from 50 to 500, increasing in increments of 50. 
The dataset preparation process involved the following steps:

1. Round-based data partitioning: We randomly separated the 
3000 data points per class into six distinct groups, each containing 1000 
total data points (500 per class), to allow for multiple experimental 
iterations. The six rounds were chosen in line with standard practices 
in machine learning experiments, where 5 to 10 rounds are typically 
used to ensure reliable and generalizable results.

2. Incremental sample sizes: For each group created in the first 
step, we generated ten cumulative subsets, with sample sizes ranging 
from 50 to 500 data points per class with increments of 50. This incre-
mental approach is commonly used in few-shot learning experiments, as 
it allows for a fine-grained analysis of the model’s performance across 
different levels of data availability.

4.4. Model training with Pattern Exploit Training (PET)

Pattern-Exploiting Training (PET) (Schick & Schütze, 2020) is a 
semi-supervised method for few-shot learning in NLP tasks like text 
classification and natural language inference. The core idea behind 
PET is to reformulate input examples as cloze-style questions (fill-in-
the-blank), that help PLMs better understand the task. This method 
uses a concept called Pattern-Verbalizer Pair (PVP) which includes two 
elements:

1. Pattern where the input is transformed into a fill-in-the-blank 
questions. This is done by inserting a masked token into the 
input text, which the model will later try to predict.

2. Verbalizer maps task labels to actual words in the language 
model’s vocabulary. These words are what the model predicts 
to fill in the blank created by the pattern.

Example:

• Input: ‘‘This movie was amazing’’.
• Pattern: The input is transformed into ‘‘This movie was [mask]’’.
• Verbalizer: The words from model’s vocabulary ‘‘great’’ (posi-
tive), ‘‘bad’’ (negative), and ‘‘okay’’ (neutral) are mapped to the 
task labels (positive, negative, neutral).

In this example, the model predicts the word that should replace
[mask] based on the context of the sentence. The selected word is 
then compared to the verbalizer to determine the sentiment classifi-
cation (e.g., if the model predicts ‘‘great’’, the sentiment is classified as 
positive).

5. Experimental settings

5.1. Datasets

To validate our hypothesis, we use real-world data sourced from 
Wikipedia articles. Specifically, we employ three datasets in differ-
ent languages: ca-citation-needed, eu-citation-needed, and sq-citation-
needed (Halitaj & Zubiaga, 2024) in Catalan, Basque and Albanian, 
respectively. These datasets contain contextual information beyond 
individual sentences and labels. For this study, however, we focused 
exclusively on two components: the text of sentences from Wikipedia 
articles and their labels indicating the presence of inline citations. The 
sentence text was used for data selection through various AL query 
strategies, while the labels served primarily to simulate the annotation 
process with oracles when necessary.
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Table 1
Distribution of datasets and their usage across three languages. Numbers present the 
number of sentences (r1–r6 denote six rounds of distinct train sets).
 Dataset Data partition Citation No citation  
 ca

Unlabeled pool
335,538 802,052  

 eu 73,086 232,372  
 sq 29,928 77,105  
 
ca/eu/sq

Train Sets r1–r6 500 each r1–r6 500 each r1–r6 
 Dev Set 250 250  
 Test Set 250 250  

For each dataset — ca-citation-needed, eu-citation-needed, and sq-
citation-needed — we applied a consistent labeling budget and data 
split, dividing the data into training, development, and testing sets.

In the context of FSL, where models are trained on very limited 
data, even slight changes in the test or development set sizes can 
sometimes affect performance (Wang et al., 2020). Thus, in our exper-
iments, we tested different sizes of the development and test sets, even 
though improvements in learning performance were not necessarily 
expected. The primary purpose of this approach was to assess how 
varying the size of these sets might influence the stability of our 
model’s evaluation metrics. Although the stability and performance 
remained largely unchanged, we observed an increased in time and 
resource consumption when the test and development sets were used at 
their maximum capacity. Therefore, in our results, we report only the 
experiments where the number of shots in the test and development 
sets were limited. The data selection for these reduced sets was done 
randomly. Table  1 presents the details of the datasets used for the 
three languages, including their splits into training, development, and 
test sets. As described in Section 4.3 for training PET models of each 
language we have created 6 distinct training datasets, each used to 
train a separate model. But we have evaluated each model using the 
same development and test datasets. The results of each language for 
all models per specific shots are then averaged and reported.

5.2. PET with active samples

Models that can be used with PET tasks are PLMs and in our CWD 
task we employed a multilingual BERT (mBERT) to calculate proba-
bilities of candidate tokens that could replace [mask] in predefined 
patterns for each of the datasets we used. Since we are working with 
datasets of three languages, we had to manually pre-define patterns 
for each language. In order to avoid introducing any bias in any of 
the languages we decided to use the same pattern structure for three 
languages but we translated them accordingly to match the language. 
Even though the goal of this research is not to find the most optimized 
patterns and verbalizer for PET, we experimented with a couple of 
patterns and we choose the best performing ones to report the final 
results on. It is worth mentioning that we started experimenting with 
patterns in Albanian language, then we translated them into Catalan 
which was quite straight forward. More challenging was translation of 
patterns into Basque language due to the grammar rules and structure 
of the language. We could not automatically just translate them with 
tools like Google Translate, instead we had to amend them manually 
in order for the patterns to make sense and to make sure that it follows 
grammatical rules of the language. The patterns we used for each 
language are presented in Table  2.

5.3. Baseline model

This study seeks to evaluate the efficiency of citation worthiness 
detection (CWD) within few-shot learning settings to accommodate 
languages with low-resources using the ALPET method.

We benchmark our work against the Contextualized Citation Wor-
thiness (CCW) model (Halitaj & Zubiaga, 2024) due to its SOTA ap-
proach in addressing CWD in the Wikipedia domain. The baseline 
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Table 2
Patterns used for PVP of PET model in three of the datasets ca-citation-needed, eu-
citation-needed, sq-citation-needed. 
 Language Verbalizer Pattern  
 

ca
0 : sense

1: amb

1. [text_a] Aquesta frase va [mask] citació.  
 2. [text_a] Aquesta frase s’hauria d’escriure

[mask] citació.
 

 3. [text_a] s’hauria d’escriure [mask] citar les 
fonts.

 

 4. [text_a] En un article de Viquipèdia, aquesta 
frase sería [mask] citació.

 

 5. Si [text_a] fós part de Viquipèdia, els editors 
requeririen que s’escrigués [mask] citació per a 
que fosi verificable.

 

 

eu
0 : gabe

1: barne

1. [text_a] Esaldi honetan erreferentzia [mask].  
 2. [text_a] Esaldi hau erreferentzia [mask]

idatzi beharko litzateke.
 

 3. [text_a] idaztean erreferentzia [mask].  
 4. [text_a] Wikipediako artikulu batean, esaldi 

honetan erreferentzia [mask].
 

 5. [text_a] Wikipedian balego, 
egiaztagarritasuna mantentzeko editoreek 
gomendatuko lukete erreferentzia [mask]
idaztea.

 

 

sq
0 : pa

1: me

1. [text_a] Kjo fjali duhet të jetë [mask] citim.  
 2. [text_a] Kjo fjali duhet të shënohet [mask]

citim.’
 

 3. [text_a] Duhet të shënohet [mask] burim 
informacioni.

 

 4. [text_a] Në një artikull të Wikipedias, kjo 
fjali duhet të jetë [mask] citim.

 

 5. Nëse [text_a] do të ishte fjali e Wikipedias, 
editorët do të kërkonin të ishte [mask] citim 
për shkak të verifikueshmërise.

 

Table 3
Model percentage improvement by instance range count.
 Dataset Model 50–100 100–300 300–500 
 EU ALPET 3.0% 5.3% 0.9%  
 SQ ALPET 2.5% 1.2% 1.2%  
 CA ALPET 1.4% 5.3% 1.9%  

Table 4
Summary of reduction percentages in labeled examples for ALPET compared to CCW.
 Reduction (ca) Reduction (eu) Reduction (sq) 
 mean 70% 58% 72%  
 std 10% 24% 21%  
 median 67% 67% 78%  
 75p 75% 75% 83%  

incorporates a transformer-based architecture, utilizing contextual em-
beddings from mBERT to capture sentence-level features. To ensure 
methodological consistency and comparability, we adapted CCW by 
adding an AL step for data selection. This modification aligns with our 
ALPET approach, and it allow for a more direct performance compari-
son between the models in terms of both accuracy and efficiency across 
languages like Albanian, Basque, and Catalan.

5.4. Evaluation metrics

To assess and compare the performance of the proposed ALPET 
method against the baseline CCW, we employ the macro F1 score 
as the primary evaluation metric. Given the balanced nature of our 
dataset and the equal importance of both classes — positive (sentences 
requiring inline citations) and negative (sentences not requiring inline 
citations) — the macro F1 score is well-suited for this task as it ensures 
that the performance across both classes is equally represented.
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Fig. 3. F1 Score averaged across all query strategies and instances count.

5.5. Training details

Hyperparameters. The ALPET method was trained using the fol-
lowing hyperparameters. We utilized the multilingual BERT with a 
maximum sequence length of 256 tokens and a batch size of 4 for 
training and 8 for evaluation. The model was trained for 3 epochs, 
with a learning rate of 1e–5 and a weight decay of 0.01. Optimization 
was handled by the Adam optimizer with an epsilon value of 1e–8 and 
a maximum gradient norm of 1.0 to prevent gradient explosion. The 
same hyperparameters, where applicable, were used for the baseline 
CCW model. All experiments were executed on a GPU setup to handle 
the computational demands of training the BERT model.

Checkpoints. Training was repeated for 3 iterations to ensure 
robustness in the results. Checkpoints were saved after every epoch 
allowing the model to resume training from the last saved checkpoint.

Labeling budget. Our final labeling budget was 3000 samples per 
class for each AL query strategy. From which then we created six 
distinct rounds of datasets as described in Section 4.3. For each dataset 
the maximum labeling budget was set to 500 instances per class, and 
we experimented with scenarios ranging from 50 to 500, increasing by 
steps of 50.

The task was conducted in a pool-based AL scenario, utilizing 
various AL query strategies as described in Section 4.1. AL labeling 
was done in iterations, with 60 samples selected per iteration across 
100 iterations.

Data split. All labeled samples obtained through AL were used for 
training, while additional data, consisting of 250 instances per class, 
was reserved for test and development sets, as shown in Table  1.

Hardware/Software setup. All experiments were conducted using 
PyTorch on a single NVIDIA A100 40 GB GPU.

6. Experiment results

In this section we present the evaluation of our ALPET model along-
side the CCW baseline model on three datasets CA-citation-needed, 
EU-citation-needed, and SQ-citation-needed. Results are organized as 
answers to hypotheses.

6.1. ALPET outperforms baseline models in low-resource languages (H1)

This section aims to evaluate Hypothesis H1. We hypothesized 
that ALPET would outperform the baseline CCW model in terms of 
data efficiency (i.e., achieving comparable performance with fewer la-
beled examples) and predictive performance (F1 Score) in low-resource 
languages, while utilizing the same AL query strategies.

Our experiments conducted on the CA-citation-needed, EU-citation-
needed, and SQ-citation-needed datasets provide empirical evidence 
that supports this hypothesis. Fig.  3 offers a summarized view of the 
performance comparison between the ALPET model and the CCW base-
line model. This figure presents the average F1 scores achieved by both 
models across all data selection strategies and instance counts for each 
of the three datasets. As figure indicates, ALPET, on average, achieves 
better performance than CCW baseline across all three datasets.

In the EU-citation-needed dataset as illustrated in the top subplot of 
Fig.  4(a), ALPET achieved an average F1 Score of 53% across all query 
strategies with only 50 labeled examples, whereas CCW required 150 
labeled examples to reach the same F1 Score. This indicates that ALPET 
achieved comparable predictive performance with 66.67% reduction 
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Fig. 4. Comparison between the ALPET model and the CCW baseline. Subplots in figure (a) represents the average F1 Score for various active learning query strategies across 
different number of instances for three datasets: eu, sq, and ca. The orange line with circle markers represents the alpet model, while the blue line with triangle markers represents 
the ccw baseline. Each subplot in (a) corresponds to a specific dataset, with eu at the top, sq in the middle, and ca at the bottom. In figure (b), the heatmap displays the average 
F1 Score across all instances for each query strategy. The distinct colors in the heatmap (blue, green, and orange) correspond to the eu, sq, and ca datasets, respectively, while 
the 𝑥-axis distinguishes between the ccw and alpet models for each dataset.
in labeled examples. In the SQ-citation-needed dataset, shown in the 
middle subplot of Fig.  4(a), ALPET achieved an average F1 Score of 
58% across all query strategies with only 50 labeled examples, whereas 
CCW required 200 labeled examples to reach similar performance 
level. This represents a 75% reduction in labeled examples, reinforcing 
ALPET’s superior data efficiency in this dataset.

Similarly, in the CA-citation-needed dataset, as presented in the 
bottom subplot of Fig.  4(a), ALPET achieved an average F1 Score of 
55% across all query strategies with only 50 labeled examples, whereas 
CCW needed above 150 labeled examples to match this performance. 
This demonstrates that ALPET not only outperforms CCW in terms of 
predictive performance but also does so with at least 66.67% fewer 
labeled examples. The reduced annotation cost achieved by ALPET, 
showed by the smaller number of labeled examples required, is par-
ticularly valuable in low-resource settings where labeled data is scarce 
and expensive.

The heatmap in Fig.  4(b) provides a detailed comparison of AL 
query strategies, showing the average F1 scores across all instance 
counts for both ALPET and CCW in the three datasets (eu, sq, and ca). 
The heatmap demonstrates that ALPET generally outperforms CCW in 
most query strategies across all datasets. For example, in the pool-bt 
strategy, ALPET achieves an average F1 Score of 60% in the eu dataset, 
compared to 58% for CCW, and similarly outperforms in the sq and ca 
datasets with an average F1 Score difference of 2%–3%. However, the 
models achieve comparable performance for pool-cal and pool-greedyc 
in the sq dataset, and pool-greedyc-cosine for ca dataset. ALPET un-
derperforms CCW in strategies such as cosine-max in the eu and sq 
datasets, euclidean-max–min in the eu dataset and euclidean-max in the 
sq dataset. In conclusion we can see that the results presented in this 
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section demonstrate ALPET’s ability to achieve comparable or higher F1 
scores with significantly fewer labeled examples than the CCW baseline, 
supporting Hypothesis H1. ALPET shows a clear advantage in both data 
efficiency and performance for CWD in low-resource languages.

6.2. ALPET’s performance plateau and data efficiency (H2)

This section aims to evaluate Hypothesis H2. We hypothesized 
that ALPET’s performance improves with increasing labeled data but 
plateaus after a certain number of samples, making it effective in low-
resource settings. The subplots in Fig.  5 confirm this hypothesis by 
showing that ALPET maintains a good performance up to 300 labeled 
examples, beyond which its improvement is minimal.

Looking closely at Fig.  5(a), at 50 shots, ALPET starts with a higher 
averaged F1 score across all three datasets (53%, 58%, and 55%) 
compared to CCW (48%, 51%, and 48%), showing a clear initial ad-
vantage in performance. As the number of labeled instances increases, 
ALPET continues to maintain its lead. The dashed vertical line marks 
the point where we hypothesized the performance plateau to occur 
(at 300 labeled examples per class). Specifically, in the EU-citation-
needed dataset as shown in Fig.  5(a) (left plot), ALPET’s performance 
rises from an F1 Score of 53% at 50 labeled examples to 58% at 
300 labeled examples. Beyond 300 examples, the F1 Score stabilizes, 
showing minimal improvement with F1 score slightly passing 58% 
up to 500 instances. A similar trend is observed in the SQ-citation-
needed dataset illustrated in Fig.  5(a) (middle plot), where ALPET’s F1 
score increases to 61% at 300 labeled examples, after which further 
improvement flattens. In the CA-citation-needed dataset Fig.  5(a) (right 
plot), ALPET reaches an F1 score of 59% at 300 labeled examples, 
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Fig. 5. Comparison of F1 Score performance between ALPET and CCW models across three datasets (EU, SQ, CA). Subfigures show the average F1 scores, incremental improvements 
across batches, and cumulative F1 score improvements with increasing training instances.
beyond 300 instances and up to 500 the F1 Score improves to 60%. This 
trend is consistent across datasets, showing that ALPET is particularly 
efficient at leveraging smaller datasets in low-resource settings and 
that the extra effort or resources spent on labeling beyond this point 
does not lead to much further improvement. This is significant in low-
resource settings, where obtaining large amounts of labeled data is 
often expensive and time-consuming. ALPET’s ability to achieve good 
performance with only up to 300 labeled samples suggests its potential 
to overcome the data bottleneck and facilitate CWD in languages where 
labeled data is scarce.

A detailed comparison of performance gains in Fig.  5(b) shows the 
F1 score improvement between successive labeled example counts. For 
EU dataset Fig.  5(b) (left plot) ALPET improves almost 3% from 50–100 
instances, and 1%–2% with each additional batch of labeled examples, 
but after 300 samples the gain diminishes to 0.1%. Similarly for CA 
datasets. An overall percentage improvement of instance count ranges 
is presented in the Table  3 which shows that from 300–500 instances 
the model improves about 1%–2% across languages.

The subplots in Fig.  5(c) show the cumulative improvement in F1 
Score relative to the initial performance at 50 instances for both ALPET 
and CCW models across the three datasets. ALPET shows steady im-
provement, with a maximum of 9% cumulative gain by 500 instances; 
with the majority of gain achieved up to 300 instances as seen in the 
column 100–300 of Table  3. In contrast, CCW achieves 25% gain by 
11 
500 instances reinforcing the need for more data to achieve comparable 
results.

ALPET’s performance has direct implications for resource efficiency 
because it reduces the annotation effort required compared to ap-
proaches like CCW. Furthermore, training on a smaller dataset re-
duces the computational time and resources required, making ALPET 
a more efficient approach for CWD in environments with constrained 
resources.

The analysis presented in this section, demonstrating a clear per-
formance plateau after 300 labeled examples across all three datasets, 
supporting Hypothesis H2. ALPET’s ability to achieve and maintain 
good performance with a limited number of samples underscores its 
suitability for low-resource CWD tasks.

6.3. Efficiency and robustness of ALPET with reduced labeled data in 
low-resource languages (H3)

This section aims to evaluate Hypothesis H3. We hypothesized that 
ALPET would achieve comparable performance to the baseline CCW 
model while requiring significantly fewer labeled examples. Specifically 
as presented in Fig.  5(a), ALPET achieves an average F1 Score of 
55% across the three datasets with 50 labeled examples per class, 
whereas CCW requires 200 examples for the same performance. We 
also evaluate whether ALPET’s performance remains robust with fewer 
labeled examples to demonstrate its data efficiency in low-resource 
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Fig. 6. Percentage reduction in labeled examples needed by ALPET compared to CCW 
across query strategies for CA, EU, and SQ datasets.

settings. The percentage reduction in labeled examples between ALPET 
and CCW for each query strategy was calculated by comparing the 50-
shot performance of ALPET to the performance of CCW at the point 
where it matched ALPET’s F1 Score. We consider an F1 Score of 55%, 
the average score achieved by ALPET with 50 labeled samples, as a 
competitive performance benchmark. A summary of reductions across 
three datasets is visualized in Fig.  6 and presented in Table  4.

The reduction percentages across the three datasets reveal that 
ALPET achieves an average reduction of 70% in CA, 58% in EU, and 
72% in SQ (mean in Table  4) while maintaining a competitive F1 
Score of 55% compared to CCW performance. In at least 50% of the 
query strategies, ALPET reduces the labeled data requirement by 67% 
in CA and EU, and by 78% in SQ (median in Table  4). In 25% of 
the query strategies, ALPET achieves a reduction of 75%–83% (75th 
percentile in Table  4). These results demonstrate that ALPET’s reduc-
tion performance is consistently high across various query strategies. 
The variability (as indicated by std in Table  4) differs slightly across 
datasets. The EU dataset shows a standard deviation of 24%, suggesting 
higher variability in reduction percentages compared to SQ (21%) and 
CA (10%). This indicates that the reduction in labeled examples may 
depend more on the chosen query strategy for some languages than 
others.

Fig.  6 visualizes the percentage reduction in labeled examples 
needed by ALPET compared to CCW across various query strate-
gies for the CA, EU, and SQ datasets. Overall, ALPET demonstrates 
strong performance, with most query strategies achieving substan-
tial reductions in labeling requirements, ranging between 58% and 
83% across datasets. While the CA dataset shows consistently high 
reductions, the EU and SQ datasets exhibit some variability, including 
a few query strategies that fail to reduce labeling at all. However, 
the majority of strategies still perform effectively, highlighting the 
robustness of ALPET’s approach in minimizing labeled data across 
different languages.

The findings presented in this section, demonstrating ALPET’s abil-
ity to achieve competitive performance (F1 Score of 55%) with above 
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80% reductions in labeled data strongly support Hypothesis H3.
ALPET’s efficiency and robustness in low-resource settings make it a 
promising approach for CWD in such contexts. From the results above 
we saw that ALPET is efficient in three low-resource language, this 
might suggest that the model’s data efficiency can generalize to other 
languages with similar resource constraints, however, further research 
will need to be conducted to confirm this.

6.4. Effectiveness of active learning query strategies (H4)

Initially we hypothesized that AL query strategies typically achieve 
higher F1 scores than random sampling in low-resource language 
datasets. This expectation was based on the belief that effective AL 
query strategies, which select data strategically, would outperform 
the simple random sampling. However, the results obtained from the 
comparative analysis of the ALPET model across three low-resource 
languages using the F1 Score as the evaluation metric did not support 
this hypothesis across all AL strategies employed.

As described in the dataset section, we created ten datasets for each 
language, with instance counts ranging from 50 to 500. In each case, 
we compared random sampling with one of the AL query strategies, 
ensuring that both methods used the same number of shots. In Fig. 
7 each dataset has its own plot (marked with ca, eu, sq at the top), 
whereas the fourth plot with notation (combined) holds the average 
performance of three datasets. The x-axes represent shot/instance sizes 
(50–500) while 𝑦-axis show AL strategies. To evaluate the performance, 
we calculated the difference in F1 scores between random sampling 
and AL strategies. Before generating the combined plot of Fig.  7 we 
found the average F1 Score of three datasets, then subtracted random 
sampling’s F1 from that of the AL strategies. We define an AL query 
strategy as better than random sampling if the difference between 
their F1 Scores is a negative number. The results were visualized 
using heatmaps, where red shades represent better performance by AL 
strategies relative to random sampling, the blue shades represent better 
performance from random sampling, and finally the light blue almost 
white squares with zero values represent similar performance of both 
models (see Fig.  7).

The experiments conducted to evaluate this hypothesis revealed 
a more nuanced scenario than initially anticipated. While certain 
AL strategies did exhibit some advantages, the results only partially 
support H4. Strategies such as ALPS, LightweightCoreset, euclidean-
min, and euclidean-cycle outperformed random sampling in certain 
instances, particularly when slightly larger shot sizes provided more 
samples to guide the clustering or distance-based selection. Their effec-
tiveness however varied by language and shot size and often yielded 
only marginal improvements over random data selection. These more 
effective AL strategies, have in common usage of K-Means clustering 
which in essence works through euclidean distance calculation.

By contrast, AL strategies that failed to outperform random sam-
pling, systematically across all shot sizes and languages, such as cosine-
max, euclidean-max, GreedyCoreset, tend to select points based on their 
maximum distance from one another. In low-resource scenarios, this 
approach is struggling to identify sufficiently representative samples, 
making it no more effective (or sometimes less effective) than a random 
selection. Another key factor is the size of the unlabeled data pool from 
which AL strategies draw. Prior studies (Sorscher, Geirhos, Shekhar, 
Ganguli, & Morcos, 2022) have shown that advanced samplers begin 
to outperform random sampling when a dataset contains around one 
million rows and approximately 1% of data are selected form there — 
a condition satisfied by Catalan dataset only. In contrast, for smaller 
datasets (e.g., around 500 selected samples), random sampling tends to 
be just as effective, or even better. In conclusion, the hypothesis that 
AL strategies consistently outperform random sampling in low-resource 
language datasets for CWD was not fully supported. The effectiveness of 
specific AL strategies was contingent upon factors such as the dataset, 
language, and the number of labeled instances. As a result, random 
sampling remains a competitive baseline, particularly when dealing 
with smaller pool of unlabeled data.
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Fig. 7. Comparing AL strategies to random data sampling. Heatmap displaying the cross-differences in F1 scores between active learning (AL) strategies and random sampling 
across all datasets and shot sizes.
6.4.1. Linguistic features and AL performance
The red squares in the heatmaps of Fig.  7 show that performance 

of AL query strategies compared to random sampling varies across 
languages, which may be due to factors like language complexity. This 
variability signifies that further investigation is needed to understand 
the reason behind it.

In the ca and eu datasets, usually AL strategies outperform random 
sampling when the labeled data size is smaller (up to 250 shots) 
as opposed to when the instances increase up to 500. This may be 
attributed to the larger original unlabeled data pools in these two 
datasets, which give AL strategies access to a more diverse and varied 
set of examples to choose from. The higher variance in the data pool 
allows AL strategies to better identify informative samples, which leads 
to improved performance in low-shot scenarios. On the other hand, the 
sq dataset, with its smaller unlabeled data pool, shows more limited 
gains from AL strategies early on compared to when more labeled data 
instances are added. This can be an indication that AL’s advantage 
is more pronounced when there is a larger pool of unlabeled data to 
choose from.

Ultimately, we were interested to find out in which cases AL query 
strategies are more consistent in beating random data selection across 
three languages. We found out that only in a limited number of cases 
this happened, ALPS with 250 and 300 instances and euclidean-min 
with 250 instances. Showing that the effectiveness of these strategies 
is more conditional than initially hypothesized. ALPS performance can 
be attributed to the strategy’s ability to group semantically similar sen-
tences based on dense embeddings from BERT, which encapsulates rich 
13 
semantic information. By clustering these semantically dense sentences, 
K-Means increases the likelihood of selecting informative examples. 
In contrast, random sampling may pick redundant or less informative 
samples, making BERT embeddings and K-Means especially effective in 
low-resource settings.

To gain deeper insights into the linguistic features that influence 
the performance of AL strategies, we compared K-Means and random 
sampling across six linguistic metrics: Unique Word Count, Type-Token 
Ratio (TTR), Vocabulary Richness, Total Tokens, Average Words Per 
Sentence, and Average Word Length, visualized in Fig.  8. The reduced 
TTR for K-Means suggest a trade-off between sentence length and 
lexical diversity because longer sentences often contain repeated words, 
which lower the TTR. However, the higher Unique Word Count and 
Vocabulary Richness indicate that the K-Means captures diverse vocab-
ulary. By selecting longer sentences as presented by Average Words Per 
Sentence, K-Means samples provide more complex language structures. 
While TTR may be lower, the presence of more tokens suggests that 
the sentences are capable of conveying more information. K-Means, 
when paired with BERT embeddings, effectively captures semantically 
similar sentences. Average Word Length provides additional insight 
into linguistic complexity, particularly in Basque (eu), which, as an 
agglutinative language, naturally has longer words due to its mor-
phological structure. K-Means’ ability to work well with longer word 
forms in Basque suggests that it can effectively capture morphologically 
complex languages. In contrast, Albanian (sq) and Catalan (ca), which 
have shorter average word lengths, benefit more from K-Means’ ability 
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Fig. 8. Linguistic features that could influence the performance of data selection 
through ALPS versus random selection.

to select longer, more informative sentences rather than focusing on 
individual word length. In conclusion, K-Means performance across 
three languages indicates that this strategy as opposed to random 
has helped the model to better understand the language nuances that 
likely contribute to improved model training. This is crucial in low-
resource contexts, where the richness of the training data influences 
the performance of models.

While not uniformly outperforming random sampling, analysis in 
this section reveal that specific AL query strategies, particularly those 
employing semantic clustering techniques like K-Means, can offer ad-
vantages in low-resource language settings. These advantages become 
more pronounced with larger unlabeled pool of data, where AL strate-
gies have a greater opportunity to identify and leverage informative 
samples allowing random sampling to remain a competitive baseline for 
smaller datasets. These findings highlight the importance of carefully 
considering both the AL strategy and dataset characteristics when 
working with low-resource languages.

7. Conclusion

We introduced ALPET, an active few-shot learning approach in-
tegrating Active Learning (AL) and Pattern-Exploiting Training (PET) 
for Citation Worthiness Detection (CWD) in low-resource languages. 
Evaluating ALPET on Catalan, Basque, and Albanian confirmed its 
superior data efficiency and accuracy over the CCW baseline.

Our findings show that ALPET achieves the same or better perfor-
mance than CCW while requiring significantly fewer labeled examples. 
With just 50 labeled examples per class, ALPET attained an average F1 
score of 55%, whereas CCW needed 200 examples for the same perfor-
mance. Across datasets, ALPET reduced annotation needs by 58%–78%, 
making it a cost-effective solution for low-resource settings. Moreover, 
its performance plateaus after 300 labeled samples, indicating its ability 
to achieve optimal performance with minimal data, a crucial advantage 
for under-resourced languages.

A key factor behind ALPET’s superior performance is PET’s ability 
to generalize well with minimal labeled data. Active Learning further 
enhances this by selecting the most informative samples, refining model 
learning. However, our analysis also revealed that the effectiveness 
of AL strategies varies by dataset and language, with some strategies 
(e.g., those incorporating K-Means clustering in the backend) perform-
ing better when applied to large unlabeled pools. This suggests that 
AL strategy selection should be tailored to the specific task and dataset 
characteristics.
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Beyond CWD, ALPET’s data efficiency and robustness make it a 
promising approach for other NLP tasks facing similar constraints, such 
as claim detection and rumor verification. This research contributes 
to the development of more effective and scalable CWD systems for 
under-resourced languages, enhancing the reliability of information in 
these languages. Future work could explore the impact of real-time 
human annotation in Active Learning settings, further strengthening the 
applicability of this approach in real-world scenarios.

8. Limitation and future work

A limitation of this study is the reliance on simulated AL rather 
than involving real-time human annotators. While AL is designed to 
iteratively select the most informative examples for human labeling 
to outperform random sampling, conducting such experiments with 
live human feedback is time-consuming and costly. This makes it 
challenging to implement in academic research. To address this, we 
simulated the process by using already labeled datasets, treating them 
as if they were unlabeled. Although this approach is widely adopted to 
bypass the logistical difficulties of real-time annotation, it may not fully 
replicate the dynamic interactions found in practical, human-in-the-
loop AL environments. Human annotators bring their own subjective 
interpretations, biases, and inconsistencies to the labeling process, 
factors that a simulated environment cannot fully replicate.

Additionally, in this study, we focused on a specific set of AL query 
strategies. While this provides valuable insights, it does not cover the 
entire spectrum of available techniques. Exploring a wider range of 
AL methods, such as committee-based strategies, could provide a more 
comprehensive understanding of AL’s potential and limitations for CWD 
in low-resource languages.

Furthermore, while ALPET has been evaluated on three distinct 
low-resource languages, its effectiveness in extremely low-resource 
languages, where labeled data is even scarcer and linguistic structures 
may be more complex, remains an open question. Certain languages 
with rich morphological structures or limited written corpora could 
present additional challenges that require further investigation.

Real-world deployment scenarios and practical applications of
ALPET remain unexplored. Evaluating its feasibility in citation recom-
mendation systems or automated fact-checking pipelines would provide 
insights into its practical utility. Moreover, conducting user studies 
to assess how human annotators interact with ALPET’s outputs could 
help validate its practical applicability. Finally, benchmarking ALPET 
against multilingual CWD models would offer a broader perspective on 
its competitiveness across a wider range of languages.

Future research could prioritize addressing these limitations by:

• Incorporating small-scale experiments with human annotators to 
validate the findings derived from the simulated AL setting. This 
would provide valuable insights into the real-world performance 
of ALPET and help refine the data selection process.

• Exploring and evaluating a more diverse set of AL strategies, fo-
cusing on their robustness and adaptability to different languages 
and data characteristics. This could involve investigating meth-
ods that specifically address the challenges posed by imbalanced 
datasets and noisy labels, which are common in low-resource 
scenarios.

• Investigate ALPET’s effectiveness in languages with highly com-
plex morphology or extremely limited annotated data to assess its 
adaptability across a wider range of low-resource settings.

• Investigating real-world deployment scenarios to assess ALPET’s 
practicality in citation recommendation systems or automated 
fact-checking pipelines.

• Conducting user studies to evaluate ALPET’s applicability, mea-
suring how well human annotators interact with the system and 
whether its recommendations align with expert judgments.

• Expanding benchmarking efforts by comparing ALPET against 
broader multilingual CWD models to assess its competitiveness 
across a wider set of languages.
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