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1 Overview

Since their inception in the 1980s, language models (LMs) have been around for more

than four decades as a means for statistically modeling the properties observed from natural

language (Rosenfeld, 2000). Given a collection of texts as input, a language model computes

statistical properties of language from those texts, such as frequencies and probabilities of

words and surrounding context, which can then be used for different purposes including

natural language understanding (NLU), generation (NLG), reasoning (NLR) and, more

broadly, processing (NLP) (Dong et al., 2019). Such statistical approach to modeling natural

language has sparked debate for decades between those who argue that language can be

modeled through the observation and probabilistic representation of patterns, and those

who argue that such an approach is rudimentary and that proper understanding of language

needs grounding in linguistic theories (Mitchell and Krakauer, 2023).

It has only been recently that, as a consequence of the increase in the availability of text

collections and in the access to improved computational resources, large language models

(LLMs) have been introduced in the scientific community by revolutionizing the NLP field

(Min et al., 2023). Following the same foundational intuition as traditional LMs introduced

in the 1980s, LLMs scale up the statistical language properties garnered from large text

collections. Following the same logic of modeling statistical properties of languages as

traditional LMs, researchers have demonstrated that, with today’s computational resources, it

is possible to train much larger LLMs which are trained from huge collections of text that on

occasions can even include almost the entire Web. This is however not without controversy,

not least because use of such large-scale collections of text prioritizes quantity over quality

(Li et al., 2023a), as indeed one loses control of what data is being fed into the model when

the whole Web is being used, which in addition to valuable information contains offensive

content and misinformation (Derczynski et al., 2014; Cinelli et al., 2021; Yin and Zubiaga,

2021).

The surge of LLMs has been incremental since the late 2010s and has come in waves.

Following a wave that introduced word embedding models such as word2vec (Mikolov

et al., 2013) and GloVe (Pennington et al., 2014) for compact representation of words in

the form of embeddings, the first major wave came with the emergence of LLMs built on

top of the Transformer architecture (Vaswani et al., 2017), including BERT (Devlin et al.,

2019), RoBERTa (Liu et al., 2019) and T5 (Raffel et al., 2020). A more recent wave has led to

a surge of models for generative AI including chatbots like ChatGPT, Google Bard, as well

as open source alternatives such as LLaMa (Touvron et al., 2023), Alpaca (Taori et al., 2023)

and Lemur (Xu et al., 2023). These have in turn motivated the creation of different ways

of leveraging these LLMs, including through prompting methods (Liu et al., 2023) such as

Pattern Exploiting Training (PET) (Schick and Schütze, 2021) for few-shot text classification

as well as methods for NLG (Sarsa et al., 2022). An LLM is typically a model which is

pre-trained on existing large-scale datasets, which involves significant computational power

and time, whereas these models can later be fine-tuned to specific domains with less effort

(Bakker et al., 2022).
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In recent years, LLMs have demonstrated to achieve state-

of-the-art performance across many NLP tasks, having in turn

become the de facto baseline models to be used in many

experimental settings (Mars, 2022). There is however evidence that

the power of LLMs can also be leveraged for malicious purposes,

including the use of LLMs to assist with completion of school

assignments by cheating (Cotton et al., 2023), or to generate content

that is offensive or spreads misinformation (Weidinger et al.,

2022).

The great performance of LLMs has also inevitably provoked

some fear in society that artificial intelligence tools may eventually

take up many people’s jobs (George et al., 2023), hence questioning

the ethical implications they may have on society. This has

in turn sparked research, with recent studies suggesting to

embrace AI tools as they can in fact support and boost the

performance of, rather than replace, human labor (Noy and Zhang,

2023).

2 Limitations and open challenges

The success of LLMs is not without controversy, which

is in turn shaping up ongoing research in NLP and opening

up avenues for more research in improving these LLMs. The

following are some of the key limitations of LLMs which need

further exploration.

2.1 Black box models

After the release of the first major LLM-based chatbot system

that garneredmainstream popularity, OpenAI’s ChatGPT, concerns

emerged around the black box nature of the system. Indeed,

there is no publicly available information on how ChatGPT was

implemented as well as what data they used for training their

model. From the perspective of NLP researchers, this raises serious

concerns about the transparency and reproducibility of suchmodel,

not only because one does not know what is going on in the model,

but also because it hinders reproducibility (Belz et al., 2021). If

one runs some experiments using ChatGPT on a particular date,

there is no guarantee that somebody else can reproduce those

results at a later date (or, arguably, even on the same date), which

reduces the validity and potential for impact and generalisability of

ChatGPT-based research.

To mitigate the impact, and increase our understanding,

of black box models like ChatGPT, researchers have started

investigating methods for reverse engineering those models, for

example by trying to find out what data a model may have used

for training (Shi et al., 2023).

Luckily, however, there is a recent surge of open source models

in the NLP scientific community, which have led to the release

of models like Facebook’s LLaMa 2 (Touvron et al., 2023) and

Stanford’s Alpaca (Taori et al., 2023), as well as multilingual models

like BLOOM (Scao et al., 2023). Recent studies have also shown that

the performance of these open source alternatives is often on par

with closed models like ChatGPT (Chen et al., 2023).

2.2 Risk of data contamination

Data contamination occurs when “downstream test sets find

their way into the pretrain corpus” (Magar and Schwartz, 2022).

Where an LLM trained on large collections of text has already

seen the data it is then given at test time for evaluation, the

model will then exhibit an impressive yet unrealistic performance

score. Research has in fact shown that data contamination can be

frequent and have a significant impact (Deng et al., 2023; Golchin

and Surdeanu, 2023). It is therefore crucial that researchers ensure

that the test data has not been seen by an LLM before, for a

fair and realistic evaluation. This is however challenging, if not

nearly impossible, to figure out with black box models, which again

encourages the use of open source, transparent LLMs.

2.3 Bias in LLM models

The use of large-scale datasets for training LLMs also means

that those datasets are very likely to contain biased or stereotyped

information, which has been shown that LLMs amplify (Gallegos

et al., 2023; Li et al., 2023b). Research has shown that text

generated by LLMs includes stereotypes against women when

writing reference letters (Wan et al., 2023), suggesting that LLMs

in fact amplify gender biases inherent in the training data leading

to an increased probability of stereotypical linking between gender

groups and professions (Kotek et al., 2023). Another recent study

(Navigli et al., 2023) has also shown that LLMs exhibit biases

against numerous demographic characteristics, including gender,

age, sexual orientation, physical appearance, disability or race,

among others.

2.4 Generation of o�ensive content

Biases inherent in LLMs are at times exacerbated to even

generate content that can be deemed offensive (Weidinger et al.,

2021). Research in this direction is looking at how to best curate the

training data fed to LLMs to avoid learning offensive samples, as

well as in eliciting generation of those harmful texts to understand

their origin (Srivastava et al., 2023). This research is highly linked

with the point above on bias and fairness in LLMs, and therefore

both could be studied jointly by looking at the reduction of biases

and harm.

Some systems, such as OpenAI’s ChatGPT, acknowledge the

risk of producing offensive content in their terms of service1:

“Our Services may provide incomplete, incorrect, or

offensive Output that does not represent OpenAIs views. If

Output references any third party products or services, it

doesnt mean the third party endorses or is affiliated with

OpenAI.”

1 https://openai.com/policies/terms-of-use
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2.5 Privacy

LLMs can also capture sensitive information retrieved from its

training data. While this information is encoded in embeddings

which are not human readable, it has been found (Pan et al.,

2020) that an adversarial user can reverse engineer those

embeddings to recover the sensitive information, which can

have damaging consequences for the relevant individuals. While

research investigating these vulnerabilities of LLMs is still in its

infancy, there is awareness of the urgency of such research to make

LLMs robust to privacy attacks (Guo et al., 2022; Rigaki and Garcia,

2023; Shayegani et al., 2023).

2.6 Imperfect accuracy

Despite initial impressions that LLMs achieve an impressive

performance, a closer look and investigation into model outputs

shows that there is significant room for improvement. Evaluation

of LLMs has in turn become a fertile area of research (Chang et al.,

2023).

Aware of the many shortcomings and inaccurate outputs of

LLMs, companies responsible for the production and publication

of major LLMs all have disclaimers about the limitations of their

models. For example, ChatGPT owner OpenAI acknowledges that:

“Output may not always be accurate. You should not rely

on Output from our Services as a sole source of truth or factual

information, or as a substitute for professional advice."

Google also warns2 about the limitations of its LLM-based

chatbot Bard, as follows:

“Bard is an experimental technology and may sometimes

give inaccurate or inappropriate information that doesnt

represent Googles views.”

“Dont rely on Bards responses as medical, legal, financial,

or other professional advice.”

Facebook also has a similar disclaimer3 for its flagship model

LLaMa 2:

“Llama 2s potential outputs cannot be predicted in

advance, and the model may in some instances produce

inaccurate, biased or other objectionable responses to user

prompts. Therefore, before deploying any applications of

Llama 2, developers should perform safety testing and tuning

tailored to their specific applications of the model.”

2.7 Model hallucination

Responses and outputs generated by LLMs often deviate from

common sense, where for example a generated text can start

2 https://support.google.com/bard/answer/13594961?hl=en

3 https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.

md

discussing a particular topic, then shifting to another unrelated

topic which is not intuitive, or even stating wrong facts. LLM

hallucination has been defined as “the generation of content

that deviates from the real facts, resulting in unfaithful outputs"

(Maynez et al., 2020; Rawte et al., 2023). Efforts toward better

understanding model hallucination is focusing on different tasks,

including detection, explanation, and mitigation (Alkaissi and

McFarlane, 2023; Zhang et al., 2023), with some initial solutions

proposed to date, such as Retrieval-Augmented Generation (RAG)

(Lewis et al., 2020).

2.8 Lack of explainability

The complexity of LLM models means that it is often very

difficult to understandwhy it makes certain predictions or produces

certain outputs. This also means that it is very difficult to provide

explanations on model outputs to system users, which calls for

more investigation into furthering the explainability of LLMs

(Danilevsky et al., 2020; Gurrapu et al., 2023; Zhao et al., 2023).

3 Concluding remarks

The introduction and surge in popularity of LLMs has impacted

and reshaped NLP research. Much of the NLP research and

methods slightly over a decade ago focused on the representation

of words using bag-of-words and TF-IDF based methods and the

use of machine learning algorithms such as Logistic Regression or

Support Vector Machine classifiers. The increase in computational

capacity to handle large-scale datasets and for more complex

computing has led to the renaissance of deep learning models

and in turn the emergence of LLMs. The latter have shown to

achieve unprecedented performance across a range of downstream

NLP tasks, but have also opened up numerous avenues for future

research aiming to tackle the limitations and weaknesses of LLMs.

Much of this research will need to deal with the better curation

of the data fed to train LLMs, which in the current circumstances

has shown to have severe risks in aspects such as fairness, privacy

and harm.
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